The magnetization curves at 1.5 K and thermomagnetic curves for amorphous Fe_(90-x)Si_xZr_(10)(x=0,4,7 and 10)alloys prepared by the drum spinning technique have been measured with an extracting sample magnetometer.It...The magnetization curves at 1.5 K and thermomagnetic curves for amorphous Fe_(90-x)Si_xZr_(10)(x=0,4,7 and 10)alloys prepared by the drum spinning technique have been measured with an extracting sample magnetometer.It is obtained that the average magnetic moment,,per magnetic atom and Curie temperature,T_c,in the amorphous FeSiZr alloys increase with increasing Si content.The and T_c are found to be quite small,compared with amorphous FeSiB alloys.This unusual behavior is suggested to be due to the presence of the Fe—Fe antiferromagnetic interactions.The temperature dependence of magnetization at lower temperature is in accordance with Bloch's T^(3/2) law.Calculation shows that the spin wave stiffness constant,D,increases with increasing Si content from 0.37 meV·nm^2 for x=0 to 0.538 meV·nm^2 for x=10.The values of<r^2>indicate that the range of the exchange interaction is roughly the mean atomic distance of nearest neighbours.展开更多
As one branch of spintronics, diluted magnetic semiconductors (DMSs) are extensively investigated due to their fundamental significance and potential application in modern information society. The classical materials ...As one branch of spintronics, diluted magnetic semiconductors (DMSs) are extensively investigated due to their fundamental significance and potential application in modern information society. The classical materials (Ga,Mn)As of III-V group based DMSs has been well studied for its high compatibility with the high-mobility semiconductor GaAs. But the Curie temperature in (Ga,Mn)As film is still far below room temperature because the spin & charge doping is bundled to the same element that makes the fabrication very difficult. Alternatively, the discovery of a new generation DMSs with independent spin and charge doping, such as (Ba,K)(Zn,Mn)2As2 (briefly named BZA), attracted considerable attention due to their unique advantages in physical properties and heterojunction fabrication. In this review we focus on this series of new DMSs including (I) materials in terms of three types of new DMSs, i.e. the "111","122" and "1111" system;(II) the physical properties of BZA;(III) single crystals & prototype device based on BZA. The prospective of new type of DMSs with independent spin and charge doping is briefly discussed.展开更多
稀磁半导体兼具半导体材料和磁性材料的双重特性,是破解摩尔定律难题的方案之一.我们团队通过提出自旋和电荷分别掺杂的机制,研制发现了一类新型稀磁半导体材料,为突破经典稀磁半导体材料自旋和电荷一体掺杂引起的材料制备瓶颈提供了有...稀磁半导体兼具半导体材料和磁性材料的双重特性,是破解摩尔定律难题的方案之一.我们团队通过提出自旋和电荷分别掺杂的机制,研制发现了一类新型稀磁半导体材料,为突破经典稀磁半导体材料自旋和电荷一体掺杂引起的材料制备瓶颈提供了有效解决方案.(Ba,K)(Zn,Mn)2As2(BZA)等新型稀磁半导体通过等价掺杂磁性离子引入自旋、异价非磁性离子掺杂引入电荷,实现了 230 K 的居里温度,刷新了可控型稀磁半导体的居里温度记录.本文重点介绍 1)几种代表性的自旋和电荷掺杂机制分离的新型稀磁半导体的发现与研制;2)新型稀磁半导体的子自旋弛豫与高压物性结构的调控;3)大尺寸单晶生长、基于单晶的安德烈夫异质结研制以及自旋极化率的测量.通过新材料设计研制、综合物性研究、简单原型器件构建的“全链条”模式研究,开拓了自旋电荷分别掺杂的稀磁半导体材料研究领域,展现了这类新型稀磁半导体材料潜在的光明前景.展开更多
We succeed in inserting a number of nitrogen atoms into the R_2Fe_(17)and RTiFe_(11)intermetallic compounds.The nitrides retain original Th_2Zn_(17)(or Th_2Ni_(17_)and ThMn_(12)structures,but with an increase in the u...We succeed in inserting a number of nitrogen atoms into the R_2Fe_(17)and RTiFe_(11)intermetallic compounds.The nitrides retain original Th_2Zn_(17)(or Th_2Ni_(17_)and ThMn_(12)structures,but with an increase in the unit cell volume.The interstitial nitrogen atoms are found to have an effect of increasing the Curie tempera- ture and saturation magnetization.Moreover,a distinct effect on the magnetocrystalline anisotropy is also ob- served in these nitride compounds.Especially,NdTiFe_(11)N_(0.5)and SmTiFe_(11)N_2 have excellent intrinsic magnetic properties favourable for permanent magnet applications.展开更多
A series of Ni_(0.6-x/2)Zn_(0.4-x/2)Sn_xFe_2O_4(x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.3)(NZSFO) ferrite composities have been synthesized from nano powders using a standard solid state reaction technique. The s...A series of Ni_(0.6-x/2)Zn_(0.4-x/2)Sn_xFe_2O_4(x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.3)(NZSFO) ferrite composities have been synthesized from nano powders using a standard solid state reaction technique. The spinel cubic structure of the investigated samples has been confirmed by x-ray diffraction(XRD). The magnetic properties such as saturation magnetization(M_s),remanent magnetization(M_r), coercive field(H_c), and Bohr magneton(μ) are calculated from the hysteresis loops. The value of M_s is found to decrease with increasing Sn content in the samples. This change is successfully explained by the variation of A-B interaction strength due to Sn substitution in different sites. The compositional stability and quality of the prepared ferrite composites have also been endorsed by the fairly constant initial permeability(μ') over a wide range of frequency. The decreasing trend of μ' with increasing Sn content has been observed. Curie temperature TChas been found to increase with the increase in Sn content. A wide spread frequency utility zone indicates that the NZSFO can be considered as a good candidate for use in broadband pulse transformers and wide band read-write heads for video recording. The composition of x = 0.05 shows unusual results and the possible reason is also mentioned with the established formalism.展开更多
文摘The magnetization curves at 1.5 K and thermomagnetic curves for amorphous Fe_(90-x)Si_xZr_(10)(x=0,4,7 and 10)alloys prepared by the drum spinning technique have been measured with an extracting sample magnetometer.It is obtained that the average magnetic moment,,per magnetic atom and Curie temperature,T_c,in the amorphous FeSiZr alloys increase with increasing Si content.The and T_c are found to be quite small,compared with amorphous FeSiB alloys.This unusual behavior is suggested to be due to the presence of the Fe—Fe antiferromagnetic interactions.The temperature dependence of magnetization at lower temperature is in accordance with Bloch's T^(3/2) law.Calculation shows that the spin wave stiffness constant,D,increases with increasing Si content from 0.37 meV·nm^2 for x=0 to 0.538 meV·nm^2 for x=10.The values of<r^2>indicate that the range of the exchange interaction is roughly the mean atomic distance of nearest neighbours.
基金financially supported by Ministry of Science and Technology of China (Nos. 2018YFA03057001, and 2017YFB0405703)National Natural Science Foundation of China through the research projects (No. 11534016)
文摘As one branch of spintronics, diluted magnetic semiconductors (DMSs) are extensively investigated due to their fundamental significance and potential application in modern information society. The classical materials (Ga,Mn)As of III-V group based DMSs has been well studied for its high compatibility with the high-mobility semiconductor GaAs. But the Curie temperature in (Ga,Mn)As film is still far below room temperature because the spin & charge doping is bundled to the same element that makes the fabrication very difficult. Alternatively, the discovery of a new generation DMSs with independent spin and charge doping, such as (Ba,K)(Zn,Mn)2As2 (briefly named BZA), attracted considerable attention due to their unique advantages in physical properties and heterojunction fabrication. In this review we focus on this series of new DMSs including (I) materials in terms of three types of new DMSs, i.e. the "111","122" and "1111" system;(II) the physical properties of BZA;(III) single crystals & prototype device based on BZA. The prospective of new type of DMSs with independent spin and charge doping is briefly discussed.
文摘稀磁半导体兼具半导体材料和磁性材料的双重特性,是破解摩尔定律难题的方案之一.我们团队通过提出自旋和电荷分别掺杂的机制,研制发现了一类新型稀磁半导体材料,为突破经典稀磁半导体材料自旋和电荷一体掺杂引起的材料制备瓶颈提供了有效解决方案.(Ba,K)(Zn,Mn)2As2(BZA)等新型稀磁半导体通过等价掺杂磁性离子引入自旋、异价非磁性离子掺杂引入电荷,实现了 230 K 的居里温度,刷新了可控型稀磁半导体的居里温度记录.本文重点介绍 1)几种代表性的自旋和电荷掺杂机制分离的新型稀磁半导体的发现与研制;2)新型稀磁半导体的子自旋弛豫与高压物性结构的调控;3)大尺寸单晶生长、基于单晶的安德烈夫异质结研制以及自旋极化率的测量.通过新材料设计研制、综合物性研究、简单原型器件构建的“全链条”模式研究,开拓了自旋电荷分别掺杂的稀磁半导体材料研究领域,展现了这类新型稀磁半导体材料潜在的光明前景.
文摘We succeed in inserting a number of nitrogen atoms into the R_2Fe_(17)and RTiFe_(11)intermetallic compounds.The nitrides retain original Th_2Zn_(17)(or Th_2Ni_(17_)and ThMn_(12)structures,but with an increase in the unit cell volume.The interstitial nitrogen atoms are found to have an effect of increasing the Curie tempera- ture and saturation magnetization.Moreover,a distinct effect on the magnetocrystalline anisotropy is also ob- served in these nitride compounds.Especially,NdTiFe_(11)N_(0.5)and SmTiFe_(11)N_2 have excellent intrinsic magnetic properties favourable for permanent magnet applications.
基金the Directorate of Research and Extension, Chittagong University of Engineering and Technology (CUET), Chittagong-4349, Bangladesh under grant number CUET/DRE/201415/PHY/002
文摘A series of Ni_(0.6-x/2)Zn_(0.4-x/2)Sn_xFe_2O_4(x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.3)(NZSFO) ferrite composities have been synthesized from nano powders using a standard solid state reaction technique. The spinel cubic structure of the investigated samples has been confirmed by x-ray diffraction(XRD). The magnetic properties such as saturation magnetization(M_s),remanent magnetization(M_r), coercive field(H_c), and Bohr magneton(μ) are calculated from the hysteresis loops. The value of M_s is found to decrease with increasing Sn content in the samples. This change is successfully explained by the variation of A-B interaction strength due to Sn substitution in different sites. The compositional stability and quality of the prepared ferrite composites have also been endorsed by the fairly constant initial permeability(μ') over a wide range of frequency. The decreasing trend of μ' with increasing Sn content has been observed. Curie temperature TChas been found to increase with the increase in Sn content. A wide spread frequency utility zone indicates that the NZSFO can be considered as a good candidate for use in broadband pulse transformers and wide band read-write heads for video recording. The composition of x = 0.05 shows unusual results and the possible reason is also mentioned with the established formalism.