In the hot summer&cold winter zone in China,intermittent heating space for rooms is widely used.However,in comparison with continuous space heating,the energy-saving performance of intermittent space heating has n...In the hot summer&cold winter zone in China,intermittent heating space for rooms is widely used.However,in comparison with continuous space heating,the energy-saving performance of intermittent space heating has not been sufficiently investigated.This paper studied the factors influencing the energy performance of intermittent heating for the representativeoffice inhot summer&coldwinter zone.Basedon theheatbalancemethod,adynamic thermalmodel of the intermittent heating roomwas built and tested by experiments.And then,it analyzed the total space heating load,the amount of energy saving and energy saving ratio of the intermittent heating under different preheating hours,occupation hours,required roomtemperatures,air change rates,overall heat transfer coefficients(U-value)of windows and wall materials.If the adjacent rooms were not heated,for a typical room occupied about 10 h a day,the energy-saving ratio of intermittent heating was about 30%compared with continuous heating.But the preheating power was higher than two times of continuous heating.The results also indicated that the occupation hours had a significant effect on energy saving amount and ratio,it should be noted that the energy saving ratio by intermittent heating was much lower than the unoccupied period ratio.Relative to other factors,the heating temperatures,room air change rates and U-value of windows,and room envelope materials had little effect on energy efficiency.If the adjacent rooms were heated in the same manner as the roomin question,the energy-saving ratio of the total load of intermittent heating was heavily reduced to 8.46%.展开更多
Denim is widely accepted among exported textile products due to its aesthetics, appearance, and fashion. Practitioners employed several physical or chemical treatments to improve denim qualities in denim finishing ope...Denim is widely accepted among exported textile products due to its aesthetics, appearance, and fashion. Practitioners employed several physical or chemical treatments to improve denim qualities in denim finishing operations. So, several treatment processes, including enzymatic, bleaching, singeing, heat set, and ozone finish, are used, which made this processing more energy consumption and time-consuming. Therefore, it is significant to investigate how changing the chemicals and raw ingredients could improve the finishing process, which is environmentally and economically beneficial for sustainable production practices in the denim finishing process. This study’s research design comprises an experimental investigation in a denim plant in Bangladesh. Two different fabrics were chosen to analyze, determining the potential savings of finishing on the denim fabrics’ performance characteristics. By deducting singeing and heat-set processes, the researchers ran an experimental process by maintaining the same length of fabric. Then, the impacts of finishing process optimization on the mechanical, thermal, and comfort parameters of drape, stiffness, and tear strength were examined. The study’s findings demonstrated that this experiment increased productivity and reduced the finishing unit’s energy consumption without compromising the denim fabrics’ quality. This study significantly impacts environmental sustainability by preserving limited energy resources and manufacturing denim finishing processes.展开更多
Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,...Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,energy-saving performance of the whole metro system cannot be guaranteed.Design/methodology/approach–A cooperative train control framework is formulated to regulate a novel train operation mode.The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train.An improved brute force(BF)algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.Findings–Case studies on the actual metro line in Guangzhou,China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters.The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.Originality/value–Most existing studies optimised energy-efficient train timetable or train control strategies through an offline process,which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation.This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea,where energy-efficient train operation can be realised once train running time is determined,thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains.展开更多
One of the most important aspects of Bangladesh’s textile industry is denim. Bangladesh now has a new opportunity thanks to the global demand for denim among fashion industry professionals. Entrepreneurs from Banglad...One of the most important aspects of Bangladesh’s textile industry is denim. Bangladesh now has a new opportunity thanks to the global demand for denim among fashion industry professionals. Entrepreneurs from Bangladesh provide denim products to well-known international merchants all over the world. The worldwide denim market is predicted to expand by roughly 8% through the year 2020. We must raise the standard of denim if we are to keep up with the expanding industry. In contrast to projectile and rapier systems, air-jet weaving machines nowadays can weave practically all types of yarns without any issues and at higher rates. Due to this, air-jet looms are an excellent substitute for other weft insertion techniques. This kind of device still has one significant flaw, though, and that is the enormous power consumption brought on by the creation of compressed air. Researchers and manufacturers of air-jet looms have therefore worked very hard to find a solution to this issue and achieve a huge reduction in air consumption without compromising loom performance or fabric quality. Therefore, the purpose of this project is to look into ways to decrease air consumption and reduce auxiliary selvedge waste without any decrease in loom performance and fabric quality on existing air-jet weaving looms which reduce the manufacturing costs with process improvement. Just updating the air pressure allowed a weaving mill to reduce air usage by 11 cfm. So, with just almost no cost, a company with 100 looms could save $0.15 M each year, on compressed air. Two new methods for decreasing process costs on air jet looms have also been developed by this project work.展开更多
Currently,energy saving design has been conducted on single building but not on the whole residential community in urban and rural areas.So,the paper has proposed energy saving measures for residential planning from t...Currently,energy saving design has been conducted on single building but not on the whole residential community in urban and rural areas.So,the paper has proposed energy saving measures for residential planning from the perspective of site selection and layout of buildings.Specific measures are as follows.Firstly,buildings should be constructed on the sunny side and leeside;secondly,buildings on the south should be lower than those on the north;the east side of the building should be open while the west side should be closed;thirdly,climate protection unit should be set;fourthly,buildings should be of northsouth direction primarily,and the main room should be set on the east side and the assistant rooms or passage on the west side in the buildings of east-west direction;fifthly,it should select compact and wellarranged households and the units should not be combined in point and dislocation and jointing.展开更多
In order to have an in-depth understanding of the metal ceiling radiant panel with capillary tubes, a radiant ceiling heating system is constructed to study the actual heating performance and thermal comfort by experi...In order to have an in-depth understanding of the metal ceiling radiant panel with capillary tubes, a radiant ceiling heating system is constructed to study the actual heating performance and thermal comfort by experiments. In addition, the energy saving potential of the novel heating system is discussed in terms of the COP (coefficient of performance) of the ground source heat pump and the exergy efficiency of the radiant terminal. The results indicate that the heating system shows high thermal stability and thermal comfort. When the system reaches a stable condition, the radiant heat transfer accounts for 62.7% of the total heat transfer, and the total heat transfer can meet the heating demands of most buildings. Compared to a radiant floor heating system, it offers advantages in a shorter preheating time, a lower supply water temperature and a stronger heating capability. The COP of the ground source heat pump is increased greatly when the supply water temperature is 28 to 33 ℃, and the exergy efficiency of the metal ceiling with capillary tubes is 1.6 times that of the radiant floor when the reference temperature is 5 ℃ The novel radiant ceiling heating system shows a tremendous energy saving potential.展开更多
Functional materials may change color by heat and electricity separately or simultaneously in smart windows.These materials have not only demonstrated remarkable potential in the modulation of solar radiation but are ...Functional materials may change color by heat and electricity separately or simultaneously in smart windows.These materials have not only demonstrated remarkable potential in the modulation of solar radiation but are also leading to the development of indoor environments that are more comfortable and conducive to improving individuals'quality of life.Unfortunately,dual-responsive materials have not received ample research attention due to economic and technological challenges.As a consequence,the broader utilization of smart windows faces hindrances.To address this new generational multistimulus responsive chromic materials,our group has adopted a developmental strategy to create a poly(NIPAM)n-HV as a switchable material by anchoring active viologen(HV)onto a phase-changing poly(NIPAM)n-based smart material for better utility and activity.These constructed smart windows facilitate individualistic reversible switching,from a highly transparent state to an opaque state(thermochromic)and a red state(electrochromic),as well as facilitate a simultaneous dual-stimuli response reversible switching from a clear transparent state to a fully opaque(thermochromic)and orange(electrochromic)states.Absolute privacy can be attained in smart windows designed for exclusive settings by achieving zero transmittance.Each unique chromic mode operates independently and modulates visible and near-infrared(NIR)light in a distinct manner.Hence,these smart windows with thermal and electric dual-stimuli responsiveness demonstrate remarkable heat regulation capabilities,rendering them highly attractive for applications in building facades,energy harvesting,privacy protection,and color display.展开更多
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere...Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.展开更多
A hybrid ground-coupled heat pump(HGCHP)project in Nanjing,China is chosen to analyze the building energy-consumption properties in terms of different control strategies,building envelope and the terminal air-condit...A hybrid ground-coupled heat pump(HGCHP)project in Nanjing,China is chosen to analyze the building energy-consumption properties in terms of different control strategies,building envelope and the terminal air-conditioning system.The HGCHP uses a supplemental heat rejecter to dissipate extra thermal energy to guarantee underground soil heat balance.The software EnergyPlus is employed to simulate the project and design the heat flow of the cooling tower and the borehole heat exchanger(BHE).Then two feasible control strategies for the cooling tower and the borehole heat exchanger are proposed.The energy-saving potential of the building envelope is analyzed in terms of the surface color of the wall/roof.With the same terminal system,it is found that in the cooling season the heat flow of the insulated building with black wall/roof is 1.2 times more than that with white wall/roof.With the same insulated building and gray wall/roof,it is concluded that the heat pump units for a primary air fan-coil system show an annual energy consumption increase of 44.7 GJ compared with a radiant floor system.展开更多
The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take ...The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take advantage of these developments.Here we consider the case of many vehicles forming a queue,i.e.,vehicles traveling at a predetermined speed and distance apart.While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing,vehicle speed,and the number of vehicles on aerodynamic drag and fuel economy,this study considers the lateral offset distance of the vehicle queue.The group fuel consumption savings rate is calculated and analyzed.As also demonstrated by experimental results,some aerodynamic benefits exist.Moreover,the fuel consumption saving rate of the vehicle queue decreases as the lateral offset distance increases.展开更多
BACKGROUND Total mesorectal excision remains the gold standard for the management of rectal cancer however local excision of early rectal cancer is gaining popularity due to lower morbidity and higher acceptance by th...BACKGROUND Total mesorectal excision remains the gold standard for the management of rectal cancer however local excision of early rectal cancer is gaining popularity due to lower morbidity and higher acceptance by the elderly and frail patients.AIM To investigate the results of local excision of rectal cancer by transanal endoscopic microsurgery(TEMS)approach carried out at three large cancer centers in the United Kingdom.METHODS TEMS database was retrospectively reviewed to assess demographics,operative findings and post operative clinical and oncological outcomes.This is a retro-spective review of the prospective databases,which included all patients operated with TEMS approach,for early rectal cancer(Node-negative T1-T2),selected T3 in unfit/frail patients.RESULTS Two hundred and twenty-two patients underwent TEMS surgery.This included 144 males(64.9%)and 78 females(35.1%),Median age was 71 years.The median distance of the tumours from the anal verge 4.5 cm.Median tumour size was 2.6 cm.The most frequent operative position of the patient was lithotomy(32.3%),Full-thickness rectal wall excision was done in 204 patients.Median operating time was 90 minutes.Average blood loss was minimal.There were two 90-day mortalities.Complete excision of the tumour with free microscopic margins by>1mm were accomplished in 171 patients(76.7%).Salvage total mesorectal excision was performed in 42 patients(19.8%).Median disease-free survival was 65 months(range:3-146 months)(82.8%),and median overall survival was 59 months(0-146 months).CONCLUSION TEMS provides a promising option for early rectal cancers(Large adenomas-cT1/cT2N0),and selected therapy-responding cancers.Full-thickness complete excision of the tumour is mandatory to avoid jeopardising the oncological outcomes.展开更多
Clean steel encompasses a multitude of concepts that are based on fulfilling customer requirements and can be produced in many ways depending on the existing equipment and detailed customer demands.A common feature of...Clean steel encompasses a multitude of concepts that are based on fulfilling customer requirements and can be produced in many ways depending on the existing equipment and detailed customer demands.A common feature of all clean steel production is tight process control along with continuous monitoring.To meet an increasing demand for cold-rolled(CR)steel sheets of improved mechanical properties,and to cope with the change of the annealing process from a batch-type to a continuous process,it is necessary to establish a technique for making ultralow carbon(ULC)steel with a C-concentration lower than 20 ppm for the steelmaking process associated with a major challenge to guarantee the competitiveness with observance of environmental requirements.Steel ladle lining plays an important role on the energy consumption during the production and the refractory lining design contributes to minimize thermal bath loss,carbon pick up and shell temperature.A new generation of unfired zero carbon refractories was developed with two specific approaches:(1)replacement of firing bricks reducing CO_(2) footprint and(2)replacement of carbon containing with performance increasing.Bricks can be used in working and safety linings with a unique microstructure with better heat scattering and similar thermomechanical properties.This work presents customers’performance compared to traditional products highlighting energy savings.展开更多
Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save ...Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save energy and water in the slag flushing process of blast furnaces,an ideal comprehensive cascade utilization system scheme for annual recovery of waste heat is proposed.Based on the measured waste heat data of a steel plant,design calculations are carried out to further analyze the economic feasibility of the new scheme and provide reference for its promotion and application.展开更多
In the 13th century,the famous Italian traveller,Marco Polo,travelled a long way to China.During his stay in China,he saw many wonderful things. One of the things he discovered(发现)
In the 13th century,the famous Italian traveller,Marco Polo,travelled a long way to China.During his stay in China,he saw many wonderful things. One of the things he discovered(发现)
To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetra...To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetrain. The shift schedule can keep the torque converter working in the high efficiency range under all the working conditions except in the low efficiency range on the left when the transmission worked at the lowest shift, and in the low efficiency range on the right when the transmission worked at the highest shift. The shift quality key factors were analysed. The automatic trans-mission's bench-test adopting this shift schedule was made on the automatic transmission's test-bed. The experimental results showed that the shift schedule was correct and that the shift quality was controllable.展开更多
The artificial ground freezing(AGF)systems are designed to operate continuously for an extended period of time to control the groundwater seepage and to strengthen the groundwater structure surrounding excavation area...The artificial ground freezing(AGF)systems are designed to operate continuously for an extended period of time to control the groundwater seepage and to strengthen the groundwater structure surrounding excavation areas.This mode of operation requires a massive amount of energy to sustain the thickness of the frozen body.Therefore,it is of great interest to propose new concepts to reduce energy consumption while providing sufficient structural stability and safe operation.This paper discusses the principle of the freezing on demand(FoD)by means of experiment and mathematical model.A lab-scale rig that mimics the AGF process is conceived and developed.The setup is equipped with more than 80 thermocouples,flow-meters,and advanced instrumentation system to analyze the performance of the AGF process under the FoD concept.A mathematical model has been derived,validated,and utilized to simulate the transient FoD concept.The results suggest that the overall energy saving notably depends on the coolant’s temperature;the energy saving increases while decreasing the coolant inlet temperature.Moreover,applying the FoD concept in an AGF system leads to a significant drop in energy consumption.展开更多
In order to save energy and make more efficient use of wireless channel, this article puts forward an energy saving cooperative relaying scheme which actuates the cooperative transmis- sion only when the feedback from...In order to save energy and make more efficient use of wireless channel, this article puts forward an energy saving cooperative relaying scheme which actuates the cooperative transmis- sion only when the feedback from the destination indicates failure of the direct transmission. The proposed scheme selects the optimal relay and its corresponding transmission power in each time slot based on channel condition and residual ener- gy with the objective of minimizing energy con- sumption and extending network lifetime. In the study, the f'mite-state Markov channel model is used to characterize the correlation structure of channel fading in wireless networks, and the pro- cedure of relay selection and transmission power decision is formulated as a M arkov decision process. Numerical and simulation results show that the proposed scheme consumes less energy and prolongs the network lifetime.展开更多
Mature technologies exist to reduce the heating,ventilation,and air-conditioning(HVAC) energy associated with ventilation and use ventilation proactively to save energy.This study investigated the energy use impacts i...Mature technologies exist to reduce the heating,ventilation,and air-conditioning(HVAC) energy associated with ventilation and use ventilation proactively to save energy.This study investigated the energy use impacts in U.S.office buildings of multiple alternative ventilation strategies that combined:economizing,demand controlled ventilation(DCV),supply air temperature reset(SR),and/or a doubled ventilation rate.We used energy simulations in a Monte Carlo analysis,sampling 17 building inputs and varying locations to match the climate zone distribution of the U.S.office stock.Results indicated the possibility for significant savings compared to a baseline that ventilated constantly at a minimum rate in both a small office type with a constant air volume(CAV) HVAC system and a medium office type with a variable air volume(VAV) system.In 95%of instances,HVAC source energy savings were 5-25%in the small-CAV office(median:11%) and 6-42%in the medium-VAV office(median:27%).In the small-CAV office,DCV typically saved the most energy,usually from heating,and heating degree days and occupant density were decisive influences.In the medium-VAV office,economizing and SR were most important,DCV usually only had minor impacts,and zone temperature setpoints,along with climate indicators,were the critical influences.Other than infiltration,envelope characteristics did not strongly influence energy impacts.The untapped primary energy savings of alternative ventilation strategies over the 74%of U.S.office floorspace reasonably represented by our modeling was estimated at 36 TWh per year,with an annual value of U.S.$ 1.25 billion.展开更多
基金supported by the National Natural Science Foundation of China(No.71974129).
文摘In the hot summer&cold winter zone in China,intermittent heating space for rooms is widely used.However,in comparison with continuous space heating,the energy-saving performance of intermittent space heating has not been sufficiently investigated.This paper studied the factors influencing the energy performance of intermittent heating for the representativeoffice inhot summer&coldwinter zone.Basedon theheatbalancemethod,adynamic thermalmodel of the intermittent heating roomwas built and tested by experiments.And then,it analyzed the total space heating load,the amount of energy saving and energy saving ratio of the intermittent heating under different preheating hours,occupation hours,required roomtemperatures,air change rates,overall heat transfer coefficients(U-value)of windows and wall materials.If the adjacent rooms were not heated,for a typical room occupied about 10 h a day,the energy-saving ratio of intermittent heating was about 30%compared with continuous heating.But the preheating power was higher than two times of continuous heating.The results also indicated that the occupation hours had a significant effect on energy saving amount and ratio,it should be noted that the energy saving ratio by intermittent heating was much lower than the unoccupied period ratio.Relative to other factors,the heating temperatures,room air change rates and U-value of windows,and room envelope materials had little effect on energy efficiency.If the adjacent rooms were heated in the same manner as the roomin question,the energy-saving ratio of the total load of intermittent heating was heavily reduced to 8.46%.
文摘Denim is widely accepted among exported textile products due to its aesthetics, appearance, and fashion. Practitioners employed several physical or chemical treatments to improve denim qualities in denim finishing operations. So, several treatment processes, including enzymatic, bleaching, singeing, heat set, and ozone finish, are used, which made this processing more energy consumption and time-consuming. Therefore, it is significant to investigate how changing the chemicals and raw ingredients could improve the finishing process, which is environmentally and economically beneficial for sustainable production practices in the denim finishing process. This study’s research design comprises an experimental investigation in a denim plant in Bangladesh. Two different fabrics were chosen to analyze, determining the potential savings of finishing on the denim fabrics’ performance characteristics. By deducting singeing and heat-set processes, the researchers ran an experimental process by maintaining the same length of fabric. Then, the impacts of finishing process optimization on the mechanical, thermal, and comfort parameters of drape, stiffness, and tear strength were examined. The study’s findings demonstrated that this experiment increased productivity and reduced the finishing unit’s energy consumption without compromising the denim fabrics’ quality. This study significantly impacts environmental sustainability by preserving limited energy resources and manufacturing denim finishing processes.
基金This research was supported by the National Natural Science Foundation of China(Grant No.71971016).On behalf of all co-authors,the corresponding author states that there is no conflict of interest.
文摘Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,energy-saving performance of the whole metro system cannot be guaranteed.Design/methodology/approach–A cooperative train control framework is formulated to regulate a novel train operation mode.The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train.An improved brute force(BF)algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.Findings–Case studies on the actual metro line in Guangzhou,China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters.The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.Originality/value–Most existing studies optimised energy-efficient train timetable or train control strategies through an offline process,which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation.This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea,where energy-efficient train operation can be realised once train running time is determined,thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains.
文摘One of the most important aspects of Bangladesh’s textile industry is denim. Bangladesh now has a new opportunity thanks to the global demand for denim among fashion industry professionals. Entrepreneurs from Bangladesh provide denim products to well-known international merchants all over the world. The worldwide denim market is predicted to expand by roughly 8% through the year 2020. We must raise the standard of denim if we are to keep up with the expanding industry. In contrast to projectile and rapier systems, air-jet weaving machines nowadays can weave practically all types of yarns without any issues and at higher rates. Due to this, air-jet looms are an excellent substitute for other weft insertion techniques. This kind of device still has one significant flaw, though, and that is the enormous power consumption brought on by the creation of compressed air. Researchers and manufacturers of air-jet looms have therefore worked very hard to find a solution to this issue and achieve a huge reduction in air consumption without compromising loom performance or fabric quality. Therefore, the purpose of this project is to look into ways to decrease air consumption and reduce auxiliary selvedge waste without any decrease in loom performance and fabric quality on existing air-jet weaving looms which reduce the manufacturing costs with process improvement. Just updating the air pressure allowed a weaving mill to reduce air usage by 11 cfm. So, with just almost no cost, a company with 100 looms could save $0.15 M each year, on compressed air. Two new methods for decreasing process costs on air jet looms have also been developed by this project work.
文摘Currently,energy saving design has been conducted on single building but not on the whole residential community in urban and rural areas.So,the paper has proposed energy saving measures for residential planning from the perspective of site selection and layout of buildings.Specific measures are as follows.Firstly,buildings should be constructed on the sunny side and leeside;secondly,buildings on the south should be lower than those on the north;the east side of the building should be open while the west side should be closed;thirdly,climate protection unit should be set;fourthly,buildings should be of northsouth direction primarily,and the main room should be set on the east side and the assistant rooms or passage on the west side in the buildings of east-west direction;fifthly,it should select compact and wellarranged households and the units should not be combined in point and dislocation and jointing.
基金The National Natural Science Foundation of China(No.51106023)the National Key Technology R&D Program during the12th Five-Year Plan Period(No.2011BAJ03B14)
文摘In order to have an in-depth understanding of the metal ceiling radiant panel with capillary tubes, a radiant ceiling heating system is constructed to study the actual heating performance and thermal comfort by experiments. In addition, the energy saving potential of the novel heating system is discussed in terms of the COP (coefficient of performance) of the ground source heat pump and the exergy efficiency of the radiant terminal. The results indicate that the heating system shows high thermal stability and thermal comfort. When the system reaches a stable condition, the radiant heat transfer accounts for 62.7% of the total heat transfer, and the total heat transfer can meet the heating demands of most buildings. Compared to a radiant floor heating system, it offers advantages in a shorter preheating time, a lower supply water temperature and a stronger heating capability. The COP of the ground source heat pump is increased greatly when the supply water temperature is 28 to 33 ℃, and the exergy efficiency of the metal ceiling with capillary tubes is 1.6 times that of the radiant floor when the reference temperature is 5 ℃ The novel radiant ceiling heating system shows a tremendous energy saving potential.
基金supported by the National Research Foundation (NRF)grants funded by the Ministry of Education (2020R1A6A1A03038817),Republic of Korea。
文摘Functional materials may change color by heat and electricity separately or simultaneously in smart windows.These materials have not only demonstrated remarkable potential in the modulation of solar radiation but are also leading to the development of indoor environments that are more comfortable and conducive to improving individuals'quality of life.Unfortunately,dual-responsive materials have not received ample research attention due to economic and technological challenges.As a consequence,the broader utilization of smart windows faces hindrances.To address this new generational multistimulus responsive chromic materials,our group has adopted a developmental strategy to create a poly(NIPAM)n-HV as a switchable material by anchoring active viologen(HV)onto a phase-changing poly(NIPAM)n-based smart material for better utility and activity.These constructed smart windows facilitate individualistic reversible switching,from a highly transparent state to an opaque state(thermochromic)and a red state(electrochromic),as well as facilitate a simultaneous dual-stimuli response reversible switching from a clear transparent state to a fully opaque(thermochromic)and orange(electrochromic)states.Absolute privacy can be attained in smart windows designed for exclusive settings by achieving zero transmittance.Each unique chromic mode operates independently and modulates visible and near-infrared(NIR)light in a distinct manner.Hence,these smart windows with thermal and electric dual-stimuli responsiveness demonstrate remarkable heat regulation capabilities,rendering them highly attractive for applications in building facades,energy harvesting,privacy protection,and color display.
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
文摘Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.
文摘A hybrid ground-coupled heat pump(HGCHP)project in Nanjing,China is chosen to analyze the building energy-consumption properties in terms of different control strategies,building envelope and the terminal air-conditioning system.The HGCHP uses a supplemental heat rejecter to dissipate extra thermal energy to guarantee underground soil heat balance.The software EnergyPlus is employed to simulate the project and design the heat flow of the cooling tower and the borehole heat exchanger(BHE).Then two feasible control strategies for the cooling tower and the borehole heat exchanger are proposed.The energy-saving potential of the building envelope is analyzed in terms of the surface color of the wall/roof.With the same terminal system,it is found that in the cooling season the heat flow of the insulated building with black wall/roof is 1.2 times more than that with white wall/roof.With the same insulated building and gray wall/roof,it is concluded that the heat pump units for a primary air fan-coil system show an annual energy consumption increase of 44.7 GJ compared with a radiant floor system.
基金This study was financially supported by the National Natural Science Foundation of China(52072156)the Postdoctoral Foundation of China(2020M682269).
文摘The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take advantage of these developments.Here we consider the case of many vehicles forming a queue,i.e.,vehicles traveling at a predetermined speed and distance apart.While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing,vehicle speed,and the number of vehicles on aerodynamic drag and fuel economy,this study considers the lateral offset distance of the vehicle queue.The group fuel consumption savings rate is calculated and analyzed.As also demonstrated by experimental results,some aerodynamic benefits exist.Moreover,the fuel consumption saving rate of the vehicle queue decreases as the lateral offset distance increases.
文摘BACKGROUND Total mesorectal excision remains the gold standard for the management of rectal cancer however local excision of early rectal cancer is gaining popularity due to lower morbidity and higher acceptance by the elderly and frail patients.AIM To investigate the results of local excision of rectal cancer by transanal endoscopic microsurgery(TEMS)approach carried out at three large cancer centers in the United Kingdom.METHODS TEMS database was retrospectively reviewed to assess demographics,operative findings and post operative clinical and oncological outcomes.This is a retro-spective review of the prospective databases,which included all patients operated with TEMS approach,for early rectal cancer(Node-negative T1-T2),selected T3 in unfit/frail patients.RESULTS Two hundred and twenty-two patients underwent TEMS surgery.This included 144 males(64.9%)and 78 females(35.1%),Median age was 71 years.The median distance of the tumours from the anal verge 4.5 cm.Median tumour size was 2.6 cm.The most frequent operative position of the patient was lithotomy(32.3%),Full-thickness rectal wall excision was done in 204 patients.Median operating time was 90 minutes.Average blood loss was minimal.There were two 90-day mortalities.Complete excision of the tumour with free microscopic margins by>1mm were accomplished in 171 patients(76.7%).Salvage total mesorectal excision was performed in 42 patients(19.8%).Median disease-free survival was 65 months(range:3-146 months)(82.8%),and median overall survival was 59 months(0-146 months).CONCLUSION TEMS provides a promising option for early rectal cancers(Large adenomas-cT1/cT2N0),and selected therapy-responding cancers.Full-thickness complete excision of the tumour is mandatory to avoid jeopardising the oncological outcomes.
文摘Clean steel encompasses a multitude of concepts that are based on fulfilling customer requirements and can be produced in many ways depending on the existing equipment and detailed customer demands.A common feature of all clean steel production is tight process control along with continuous monitoring.To meet an increasing demand for cold-rolled(CR)steel sheets of improved mechanical properties,and to cope with the change of the annealing process from a batch-type to a continuous process,it is necessary to establish a technique for making ultralow carbon(ULC)steel with a C-concentration lower than 20 ppm for the steelmaking process associated with a major challenge to guarantee the competitiveness with observance of environmental requirements.Steel ladle lining plays an important role on the energy consumption during the production and the refractory lining design contributes to minimize thermal bath loss,carbon pick up and shell temperature.A new generation of unfired zero carbon refractories was developed with two specific approaches:(1)replacement of firing bricks reducing CO_(2) footprint and(2)replacement of carbon containing with performance increasing.Bricks can be used in working and safety linings with a unique microstructure with better heat scattering and similar thermomechanical properties.This work presents customers’performance compared to traditional products highlighting energy savings.
文摘Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save energy and water in the slag flushing process of blast furnaces,an ideal comprehensive cascade utilization system scheme for annual recovery of waste heat is proposed.Based on the measured waste heat data of a steel plant,design calculations are carried out to further analyze the economic feasibility of the new scheme and provide reference for its promotion and application.
文摘In the 13th century,the famous Italian traveller,Marco Polo,travelled a long way to China.During his stay in China,he saw many wonderful things. One of the things he discovered(发现)
文摘In the 13th century,the famous Italian traveller,Marco Polo,travelled a long way to China.During his stay in China,he saw many wonderful things. One of the things he discovered(发现)
文摘To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetrain. The shift schedule can keep the torque converter working in the high efficiency range under all the working conditions except in the low efficiency range on the left when the transmission worked at the lowest shift, and in the low efficiency range on the right when the transmission worked at the highest shift. The shift quality key factors were analysed. The automatic trans-mission's bench-test adopting this shift schedule was made on the automatic transmission's test-bed. The experimental results showed that the shift schedule was correct and that the shift quality was controllable.
基金McGill Engineering Doctoral Award(MEDA)Fonds de recherche du Québec-Nature et technologies(FRQNT)-Bourses de doctorat(B2X)for supporting this research
文摘The artificial ground freezing(AGF)systems are designed to operate continuously for an extended period of time to control the groundwater seepage and to strengthen the groundwater structure surrounding excavation areas.This mode of operation requires a massive amount of energy to sustain the thickness of the frozen body.Therefore,it is of great interest to propose new concepts to reduce energy consumption while providing sufficient structural stability and safe operation.This paper discusses the principle of the freezing on demand(FoD)by means of experiment and mathematical model.A lab-scale rig that mimics the AGF process is conceived and developed.The setup is equipped with more than 80 thermocouples,flow-meters,and advanced instrumentation system to analyze the performance of the AGF process under the FoD concept.A mathematical model has been derived,validated,and utilized to simulate the transient FoD concept.The results suggest that the overall energy saving notably depends on the coolant’s temperature;the energy saving increases while decreasing the coolant inlet temperature.Moreover,applying the FoD concept in an AGF system leads to a significant drop in energy consumption.
基金The authors would like to thank the reviewers for their de-tailed reviews and constructive comments, which have helped improve the quality of this paper. This work was supported by the National Natural Science Foundation of China under Grant No. 61101107 the Scientific Research and Innovation Plan for the Youth of BUPT under Grant No. 2011RC0305 the National International Science and Technology Cooperation Project under Grant No. 2010DFA11320.
文摘In order to save energy and make more efficient use of wireless channel, this article puts forward an energy saving cooperative relaying scheme which actuates the cooperative transmis- sion only when the feedback from the destination indicates failure of the direct transmission. The proposed scheme selects the optimal relay and its corresponding transmission power in each time slot based on channel condition and residual ener- gy with the objective of minimizing energy con- sumption and extending network lifetime. In the study, the f'mite-state Markov channel model is used to characterize the correlation structure of channel fading in wireless networks, and the pro- cedure of relay selection and transmission power decision is formulated as a M arkov decision process. Numerical and simulation results show that the proposed scheme consumes less energy and prolongs the network lifetime.
文摘Mature technologies exist to reduce the heating,ventilation,and air-conditioning(HVAC) energy associated with ventilation and use ventilation proactively to save energy.This study investigated the energy use impacts in U.S.office buildings of multiple alternative ventilation strategies that combined:economizing,demand controlled ventilation(DCV),supply air temperature reset(SR),and/or a doubled ventilation rate.We used energy simulations in a Monte Carlo analysis,sampling 17 building inputs and varying locations to match the climate zone distribution of the U.S.office stock.Results indicated the possibility for significant savings compared to a baseline that ventilated constantly at a minimum rate in both a small office type with a constant air volume(CAV) HVAC system and a medium office type with a variable air volume(VAV) system.In 95%of instances,HVAC source energy savings were 5-25%in the small-CAV office(median:11%) and 6-42%in the medium-VAV office(median:27%).In the small-CAV office,DCV typically saved the most energy,usually from heating,and heating degree days and occupant density were decisive influences.In the medium-VAV office,economizing and SR were most important,DCV usually only had minor impacts,and zone temperature setpoints,along with climate indicators,were the critical influences.Other than infiltration,envelope characteristics did not strongly influence energy impacts.The untapped primary energy savings of alternative ventilation strategies over the 74%of U.S.office floorspace reasonably represented by our modeling was estimated at 36 TWh per year,with an annual value of U.S.$ 1.25 billion.