期刊文献+
共找到703篇文章
< 1 2 36 >
每页显示 20 50 100
Research on a TOPSIS energy efficiency evaluation system for crude oil gathering and transportation systems based on a GA-BP neural network
1
作者 Xue-Qiang Zhang Qing-Lin Cheng +2 位作者 Wei Sun Yi Zhao Zhi-Min Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期621-640,共20页
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud... As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems. 展开更多
关键词 Crude oil gathering and transportation system GA-BP neural network Energy efficiency evaluation TOPSIS evaluation method Energy saving and consumption reduction
下载PDF
Exploring the impact of high density planting system and deficit irrigation in cotton(Gossypium hirsutum L.):a comprehensive review
2
作者 MANIBHARATHI Sekar SOMASUNDARAM Selvaraj +3 位作者 PARASURAMAN Panneerselvam SUBRAMANIAN Alagesan RAVICHANDRAN Veerasamy MANIKANDA BOOPATHI Narayanan 《Journal of Cotton Research》 CAS 2024年第3期302-317,共16页
Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere... Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems. 展开更多
关键词 Deficit irrigation High density planting system Ultra narrow row Cost saving Mechanical harvesting Yield optimization
下载PDF
Analysis of Power Matching on Energy Savings of a Pneumatic Rotary Actuator Servo-Control System 被引量:3
3
作者 Yeming Zhang Hongwei Yue +1 位作者 Ke Li Maolin Cai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第2期87-99,共13页
When saving energy in a pneumatic system,the problem of energy losses is usually solved by reducing the air supply pressure.The power-matching method is applied to optimize the air-supply pressure of the pneumatic sys... When saving energy in a pneumatic system,the problem of energy losses is usually solved by reducing the air supply pressure.The power-matching method is applied to optimize the air-supply pressure of the pneumatic system,and the energy-saving effect is verified by experiments.First,the experimental platform of a pneumatic rotary actuator servo-control system is built,and the mechanism of the valve-controlled cylinder system is analyzed.Then,the output power characteristics and load characteristics of the system are derived,and their characteristic curves are drawn.The employed air compressor is considered as a constant-pressure source of a quantitative pump,and the power characteristic of the system is matched.The power source characteristic curve should envelope the output characteristic curve and load characteristic curve.The minimum gas supply pressure obtained by power matching represents the optimal gas supply pressure.The comparative experiments under two different gas supply pressure conditions show that the system under the optimal gas supply pressure can greatly reduce energy losses. 展开更多
关键词 Pneumatic rotary actuator Energy savings Gas supply pressure Characteristic curve Power matching
下载PDF
Research on Energy Efficiency Characteristics of Mining Shovel Hoisting and Slewing System Driven by Hydraulic-Electric Hybrid System
4
作者 Xiangyu Wang Lei Ge +1 位作者 Yunhua Li Long Quan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期197-211,共15页
Mining shovel is a crucial piece of equipment for high-efficiency production in open-pit mining and stands as one of the largest energy consumption sources in mining.However,substantial energy waste occurs during the ... Mining shovel is a crucial piece of equipment for high-efficiency production in open-pit mining and stands as one of the largest energy consumption sources in mining.However,substantial energy waste occurs during the descent of the hoisting system or the deceleration of the slewing platform.To reduce the energy loss,an innovative hydrau-lic-electric hybrid drive system is proposed,in which a hydraulic pump/motor connected with an accumulator is added to assist the electric motor to drive the hoisting system or slewing platform,recycling kinetic and potential energy.The utilization of the kinetic and potential energy reduces the energy loss and installed power of the min-ing shovel.Meanwhile,the reliability of the mining shovel pure electric drive system also can be increased.In this paper,the hydraulic-electric hybrid driving principle is introduced,a small-scale testbed is set up to verify the feasibil-ity of the system,and a co-simulation model of the proposed system is established to clarify the system operation and energy characteristics.The test and simulation results show that,by adopting the proposed system,compared with the traditional purely electric driving system,the peak power and energy consumption of the hoisting electric motor are reduced by 36.7%and 29.7%,respectively.Similarly,the slewing electric motor experiences a significant decrease in peak power by 86.9%and a reduction in energy consumption by 59.4%.The proposed system expands the application area of the hydraulic electric hybrid drive system and provides a reference for its application in over-sized and super heavy equipment. 展开更多
关键词 Mining shovel Hoisting and slewing system Hydraulic-electric hybrid drive Energy saving
下载PDF
DNA Computing with Water Strider Based Vector Quantization for Data Storage Systems
5
作者 A.Arokiaraj Jovith S.Rama Sree +4 位作者 Gudikandhula Narasimha Rao K.Vijaya Kumar Woong Cho Gyanendra Prasad Joshi Sung Won Kim 《Computers, Materials & Continua》 SCIE EI 2023年第3期6429-6444,共16页
The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of data.To accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can b... The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of data.To accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can be employed,which encodes and decodes binary data to and from synthesized strands of DNA.Vector quantization(VQ)is a commonly employed scheme for image compression and the optimal codebook generation is an effective process to reach maximum compression efficiency.This article introduces a newDNAComputingwithWater StriderAlgorithm based Vector Quantization(DNAC-WSAVQ)technique for Data Storage Systems.The proposed DNAC-WSAVQ technique enables encoding data using DNA computing and then compresses it for effective data storage.Besides,the DNAC-WSAVQ model initially performsDNA encoding on the input images to generate a binary encoded form.In addition,aWater Strider algorithm with Linde-Buzo-Gray(WSA-LBG)model is applied for the compression process and thereby storage area can be considerably minimized.In order to generate optimal codebook for LBG,the WSA is applied to it.The performance validation of the DNAC-WSAVQ model is carried out and the results are inspected under several measures.The comparative study highlighted the improved outcomes of the DNAC-WSAVQ model over the existing methods. 展开更多
关键词 DNA computing data storage image compression vector quantization ws algorithm space saving
下载PDF
Low Carbon Building Design Optimization Based on Intelligent Energy Management System
6
作者 Zhenyi Feng NinaMo +2 位作者 ShujuanDai Yu Xiao Xia Cheng 《Energy Engineering》 EI 2023年第1期201-219,共19页
The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of ... The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings. 展开更多
关键词 Low carbon building design smart energy management system building structure evaluation carbon emission control energy saving control
下载PDF
Optimization of Finishing Process and Energy Savings in Denim Textile Facility
7
作者 Md. Enamul Haque Kaisul Kabir +5 位作者 Md. Asib Khan Mohammad Abu Syed Nizami Rajib Kabiraj Mohammed Fakhruddin Md. Golam Arif Md. Abu Hanif 《Journal of Textile Science and Technology》 2023年第3期151-164,共14页
Denim is widely accepted among exported textile products due to its aesthetics, appearance, and fashion. Practitioners employed several physical or chemical treatments to improve denim qualities in denim finishing ope... Denim is widely accepted among exported textile products due to its aesthetics, appearance, and fashion. Practitioners employed several physical or chemical treatments to improve denim qualities in denim finishing operations. So, several treatment processes, including enzymatic, bleaching, singeing, heat set, and ozone finish, are used, which made this processing more energy consumption and time-consuming. Therefore, it is significant to investigate how changing the chemicals and raw ingredients could improve the finishing process, which is environmentally and economically beneficial for sustainable production practices in the denim finishing process. This study’s research design comprises an experimental investigation in a denim plant in Bangladesh. Two different fabrics were chosen to analyze, determining the potential savings of finishing on the denim fabrics’ performance characteristics. By deducting singeing and heat-set processes, the researchers ran an experimental process by maintaining the same length of fabric. Then, the impacts of finishing process optimization on the mechanical, thermal, and comfort parameters of drape, stiffness, and tear strength were examined. The study’s findings demonstrated that this experiment increased productivity and reduced the finishing unit’s energy consumption without compromising the denim fabrics’ quality. This study significantly impacts environmental sustainability by preserving limited energy resources and manufacturing denim finishing processes. 展开更多
关键词 Finishing Process Energy savings Denim Fabrics Potential savings Process Optimization Cotton-Elastane Fabric
下载PDF
Minimization of Air Consumption and Potential Savings of Textile Denim Fabric Manufacturing Process
8
作者 Md. Enamul Haque Md. Bokthier Rahman +2 位作者 Waliul Kafi Md. Suja Uddin Kaiser Abhijit Dey 《Journal of Textile Science and Technology》 2023年第1期69-83,共15页
One of the most important aspects of Bangladesh’s textile industry is denim. Bangladesh now has a new opportunity thanks to the global demand for denim among fashion industry professionals. Entrepreneurs from Banglad... One of the most important aspects of Bangladesh’s textile industry is denim. Bangladesh now has a new opportunity thanks to the global demand for denim among fashion industry professionals. Entrepreneurs from Bangladesh provide denim products to well-known international merchants all over the world. The worldwide denim market is predicted to expand by roughly 8% through the year 2020. We must raise the standard of denim if we are to keep up with the expanding industry. In contrast to projectile and rapier systems, air-jet weaving machines nowadays can weave practically all types of yarns without any issues and at higher rates. Due to this, air-jet looms are an excellent substitute for other weft insertion techniques. This kind of device still has one significant flaw, though, and that is the enormous power consumption brought on by the creation of compressed air. Researchers and manufacturers of air-jet looms have therefore worked very hard to find a solution to this issue and achieve a huge reduction in air consumption without compromising loom performance or fabric quality. Therefore, the purpose of this project is to look into ways to decrease air consumption and reduce auxiliary selvedge waste without any decrease in loom performance and fabric quality on existing air-jet weaving looms which reduce the manufacturing costs with process improvement. Just updating the air pressure allowed a weaving mill to reduce air usage by 11 cfm. So, with just almost no cost, a company with 100 looms could save $0.15 M each year, on compressed air. Two new methods for decreasing process costs on air jet looms have also been developed by this project work. 展开更多
关键词 DENIM Woven Textiles Weaving Machine Air Consumption Cost Reduction Waste Reduction Potential savings
下载PDF
Optimizing Grids Demand Reduction through Enhanced Heat Transfer in Low-Temperature Waste Heat Driven ORC Systems
9
作者 Cheng Wang Zizeng Gao 《Energy and Power Engineering》 2023年第12期457-467,共11页
With increasing awareness of energy conservation and environmental protection, the Organic Rankine Cycle (ORC) system has gained significant attention. This technology enables the recovery of industrial waste heat, wa... With increasing awareness of energy conservation and environmental protection, the Organic Rankine Cycle (ORC) system has gained significant attention. This technology enables the recovery of industrial waste heat, waste incineration heat, and renewable energy sources such as geothermal heat, biomass energy, and solar energy at lower temperatures. However, the low-grade heat source utilized in ORC systems faces a challenge to achieving high power generation efficiency and output power. Therefore, enhancing the power generation capacity of ORC systems is a key research focus in this field. An entranced heat exchanger ORC system with the screw expander driven by the low-temperature heat source is established to investigate the relevant performance. Hot water temperature from 77°C to 132°C is adopted for performance analysis, while the environmental temperature is approximately 25°C. Refrigerant R245fa is selected as the working fluid, and the screw expander is employed for power generation. It is worth noting that the entranced heat exchanger ORC system has significant potential for low-temperature heat recovery. Experimental results indicate that the maximum power output is 12.83 kW, which is obtained at around 105°C hot water inlet temperature. Correspondingly, the average power output remains 11.75 kW, revealing the system’s high stability for power generation. The implementation of a plate heat exchanger for enhanced heat transfer has enabled a 50% reduction in system size compared to traditional shell-tube type ORC systems. Besides, economic calculations demonstrate substantial benefits associated with the ORC system. The calculations indicate an internal benefit of 560,000 RMB/year, accompanied by notable external benefits such as an energy saving and emission reduction potential of up to 784 t CO2 per year. Moreover, the payback period is 2.23 years. It shows a remarkable improvement in terms of performance and excellent economic benefits. As a result, the novel ORC presents a promising alternative for low-grade heat utilization as compared to conventional small-scale ORC systems. 展开更多
关键词 ORC (Organic Rankine Cycle) Plate Heat Exchanger Screw Expander Power Output Economic Analyse Energy Saving
下载PDF
Research on the cooperative train control method in the metro system for energy saving
10
作者 Siyao Li Bo Yuan +1 位作者 Yun Bai Jianfeng Liu 《Railway Sciences》 2023年第3期371-394,共24页
Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,... Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,energy-saving performance of the whole metro system cannot be guaranteed.Design/methodology/approach–A cooperative train control framework is formulated to regulate a novel train operation mode.The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train.An improved brute force(BF)algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.Findings–Case studies on the actual metro line in Guangzhou,China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters.The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.Originality/value–Most existing studies optimised energy-efficient train timetable or train control strategies through an offline process,which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation.This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea,where energy-efficient train operation can be realised once train running time is determined,thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains. 展开更多
关键词 Train operation scheme Energy saving Cooperative control Metro system
下载PDF
Research on Potential Energy Recovery System of 16T Wheeled Hybrid Excavator
11
作者 SHI Kaikai YUAN Zhonghui 《International Journal of Plant Engineering and Management》 2023年第2期113-122,共10页
The system translates the arm/boom/buck's potential energy into electrical energy and then the electrical energy is stored in a storage device.This study develops a set of energy management strategy to make the re... The system translates the arm/boom/buck's potential energy into electrical energy and then the electrical energy is stored in a storage device.This study develops a set of energy management strategy to make the recoverable energy recycling efficiently.This energy of traditional excavator is lost in the form of heat energy,which is wasteful,and makes the component's temperature higher and higher to reduce the machine's life.Research on this system not only conforms to the current topic of energy crisis,but also mates with the actual engineering,so it is significant to research that. 展开更多
关键词 hybrid excavator potential energy recove ARM energy saving
下载PDF
Analysis and Modeling of the Central Air-Conditioning System in Intelligent Buildings 被引量:6
12
作者 郭巧 徐庆伟 《Journal of Beijing Institute of Technology》 EI CAS 2002年第3期295-297,共3页
The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed ... The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods. 展开更多
关键词 intelligent building analysis and modeling central air conditioning energy saving
下载PDF
Experimental study and energy saving analysis of a novel radiant ceiling heating system 被引量:1
13
作者 汪峰 梁彩华 张小松 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期118-123,共6页
In order to have an in-depth understanding of the metal ceiling radiant panel with capillary tubes, a radiant ceiling heating system is constructed to study the actual heating performance and thermal comfort by experi... In order to have an in-depth understanding of the metal ceiling radiant panel with capillary tubes, a radiant ceiling heating system is constructed to study the actual heating performance and thermal comfort by experiments. In addition, the energy saving potential of the novel heating system is discussed in terms of the COP (coefficient of performance) of the ground source heat pump and the exergy efficiency of the radiant terminal. The results indicate that the heating system shows high thermal stability and thermal comfort. When the system reaches a stable condition, the radiant heat transfer accounts for 62.7% of the total heat transfer, and the total heat transfer can meet the heating demands of most buildings. Compared to a radiant floor heating system, it offers advantages in a shorter preheating time, a lower supply water temperature and a stronger heating capability. The COP of the ground source heat pump is increased greatly when the supply water temperature is 28 to 33 ℃, and the exergy efficiency of the metal ceiling with capillary tubes is 1.6 times that of the radiant floor when the reference temperature is 5 ℃ The novel radiant ceiling heating system shows a tremendous energy saving potential. 展开更多
关键词 radiant heating system capillary tube heatingperformance energy saving exergy efficiency
下载PDF
Active and passive modulation of solar light transmittance in a uniquely multifunctional dual-band single molecule for smart window applications
14
作者 Pooja V.Chavan Pramod V.Rathod +2 位作者 Joohyung Lee Sergei V.Kostjuk Hern Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期293-305,I0007,共14页
Functional materials may change color by heat and electricity separately or simultaneously in smart windows.These materials have not only demonstrated remarkable potential in the modulation of solar radiation but are ... Functional materials may change color by heat and electricity separately or simultaneously in smart windows.These materials have not only demonstrated remarkable potential in the modulation of solar radiation but are also leading to the development of indoor environments that are more comfortable and conducive to improving individuals'quality of life.Unfortunately,dual-responsive materials have not received ample research attention due to economic and technological challenges.As a consequence,the broader utilization of smart windows faces hindrances.To address this new generational multistimulus responsive chromic materials,our group has adopted a developmental strategy to create a poly(NIPAM)n-HV as a switchable material by anchoring active viologen(HV)onto a phase-changing poly(NIPAM)n-based smart material for better utility and activity.These constructed smart windows facilitate individualistic reversible switching,from a highly transparent state to an opaque state(thermochromic)and a red state(electrochromic),as well as facilitate a simultaneous dual-stimuli response reversible switching from a clear transparent state to a fully opaque(thermochromic)and orange(electrochromic)states.Absolute privacy can be attained in smart windows designed for exclusive settings by achieving zero transmittance.Each unique chromic mode operates independently and modulates visible and near-infrared(NIR)light in a distinct manner.Hence,these smart windows with thermal and electric dual-stimuli responsiveness demonstrate remarkable heat regulation capabilities,rendering them highly attractive for applications in building facades,energy harvesting,privacy protection,and color display. 展开更多
关键词 Smart windows THERMOCHROMISM ELECTROCHROMISM Energy saving Dual-responsive material
下载PDF
The Effect of Lateral Offset Distance on the Aerodynamics and Fuel Economy of Vehicle Queues
15
作者 Lili Lei Ze Li +2 位作者 Haichao Zhou Jing Wang Wei Lin 《Fluid Dynamics & Materials Processing》 EI 2024年第1期147-163,共17页
The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take ... The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take advantage of these developments.Here we consider the case of many vehicles forming a queue,i.e.,vehicles traveling at a predetermined speed and distance apart.While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing,vehicle speed,and the number of vehicles on aerodynamic drag and fuel economy,this study considers the lateral offset distance of the vehicle queue.The group fuel consumption savings rate is calculated and analyzed.As also demonstrated by experimental results,some aerodynamic benefits exist.Moreover,the fuel consumption saving rate of the vehicle queue decreases as the lateral offset distance increases. 展开更多
关键词 Vehicle platoon automotive aerodynamics horizontal offset distance fuel consumption savings rate computational fluid dynamics
下载PDF
Local excision of early rectal cancer: A multi-centre experience of transanal endoscopic microsurgery from the United Kingdom
16
作者 Ahmed Farid Matthew Tutton +2 位作者 Prem Thambi TS Gill Jim Khan 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第10期3114-3122,共9页
BACKGROUND Total mesorectal excision remains the gold standard for the management of rectal cancer however local excision of early rectal cancer is gaining popularity due to lower morbidity and higher acceptance by th... BACKGROUND Total mesorectal excision remains the gold standard for the management of rectal cancer however local excision of early rectal cancer is gaining popularity due to lower morbidity and higher acceptance by the elderly and frail patients.AIM To investigate the results of local excision of rectal cancer by transanal endoscopic microsurgery(TEMS)approach carried out at three large cancer centers in the United Kingdom.METHODS TEMS database was retrospectively reviewed to assess demographics,operative findings and post operative clinical and oncological outcomes.This is a retro-spective review of the prospective databases,which included all patients operated with TEMS approach,for early rectal cancer(Node-negative T1-T2),selected T3 in unfit/frail patients.RESULTS Two hundred and twenty-two patients underwent TEMS surgery.This included 144 males(64.9%)and 78 females(35.1%),Median age was 71 years.The median distance of the tumours from the anal verge 4.5 cm.Median tumour size was 2.6 cm.The most frequent operative position of the patient was lithotomy(32.3%),Full-thickness rectal wall excision was done in 204 patients.Median operating time was 90 minutes.Average blood loss was minimal.There were two 90-day mortalities.Complete excision of the tumour with free microscopic margins by>1mm were accomplished in 171 patients(76.7%).Salvage total mesorectal excision was performed in 42 patients(19.8%).Median disease-free survival was 65 months(range:3-146 months)(82.8%),and median overall survival was 59 months(0-146 months).CONCLUSION TEMS provides a promising option for early rectal cancers(Large adenomas-cT1/cT2N0),and selected therapy-responding cancers.Full-thickness complete excision of the tumour is mandatory to avoid jeopardising the oncological outcomes. 展开更多
关键词 Local excision Transanal endoscopic microsurgery Early rectal cancer Rectum preservation Rectum saving
下载PDF
Optimum Energy Management of the Central Air-Conditioning System in Intelligent Buildings
17
作者 郭巧 徐庆伟 《Journal of Beijing Institute of Technology》 EI CAS 2002年第3期298-301,共4页
An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system w... An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system was established. The periodically autoregressive models (PARM) based on genetic algorithms (GA) were used to predict the next day’s cold load. The improved genetic algorithms (IGA) with stochastic real number coding were used to finish the optimum energy saving scheduling of the system. The simulation results for the building of the Liangmahe Plaza show that the proposed strategy can save energy up to about 24 5%. 展开更多
关键词 intelligent building genetic algorithms central air conditioning energy saving
下载PDF
Novel Brick Technology for Carbon Reduction Footprint in Steel Shop Linings
18
作者 Carlos PAGLIOSA Leandro ROCHA +1 位作者 Marcelo BORGES Celio CAVALCANTE 《China's Refractories》 CAS 2024年第2期16-21,共6页
Clean steel encompasses a multitude of concepts that are based on fulfilling customer requirements and can be produced in many ways depending on the existing equipment and detailed customer demands.A common feature of... Clean steel encompasses a multitude of concepts that are based on fulfilling customer requirements and can be produced in many ways depending on the existing equipment and detailed customer demands.A common feature of all clean steel production is tight process control along with continuous monitoring.To meet an increasing demand for cold-rolled(CR)steel sheets of improved mechanical properties,and to cope with the change of the annealing process from a batch-type to a continuous process,it is necessary to establish a technique for making ultralow carbon(ULC)steel with a C-concentration lower than 20 ppm for the steelmaking process associated with a major challenge to guarantee the competitiveness with observance of environmental requirements.Steel ladle lining plays an important role on the energy consumption during the production and the refractory lining design contributes to minimize thermal bath loss,carbon pick up and shell temperature.A new generation of unfired zero carbon refractories was developed with two specific approaches:(1)replacement of firing bricks reducing CO_(2) footprint and(2)replacement of carbon containing with performance increasing.Bricks can be used in working and safety linings with a unique microstructure with better heat scattering and similar thermomechanical properties.This work presents customers’performance compared to traditional products highlighting energy savings. 展开更多
关键词 steel ladle zero carbon energy saving
下载PDF
Analysis and Prospect of Waste Heat Utilization from Blast Furnace Slag Flushing
19
作者 Shenqin Zhang Junyi Qing 《Frontiers of Metallurgical Industry》 2024年第2期15-20,共6页
Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save ... Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save energy and water in the slag flushing process of blast furnaces,an ideal comprehensive cascade utilization system scheme for annual recovery of waste heat is proposed.Based on the measured waste heat data of a steel plant,design calculations are carried out to further analyze the economic feasibility of the new scheme and provide reference for its promotion and application. 展开更多
关键词 blast furnace slag flushing waste heat utilization comprehensive cascade utilization energy saving and water-saving
下载PDF
Thermodynamic Analysis,Simulation and Optimization on Energy Savings of Ideal Internal Thermally Coupled Distillation Columns 被引量:3
20
作者 刘兴高 马龙华 钱积新 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2000年第1期57-63,共7页
Internal thermally coupled distillation columns (ITCDIC) are the frontier of distillation energy saving research. In this paper, a novel energy saving model of ideal ITCDIC and a simulation algorithm are presented,upo... Internal thermally coupled distillation columns (ITCDIC) are the frontier of distillation energy saving research. In this paper, a novel energy saving model of ideal ITCDIC and a simulation algorithm are presented,upon which a series of comparative studies on energy savings with conventional distillation columns are carried out. Furthermore, we present an optimization model of ideal ITCDIC, which can be used to achieve the maximum energy saving and find the optimal design parameters directly. The binary system of benzene-toluene is adopted for the illustrative example of simulation and optimization. The results show that the maximum energy saving of ITCDIC is 52.25% (compared with energy consumption of conventional distillation under the minimum reflux ratio operation); the optimal design parameters are obtained, where the rectifying section pressure and the feed thermal condition are Pr=0.3006 MPa and q=0.5107 respectively. 展开更多
关键词 DISTILLATION thermal coupling energy savings SIMULATION OPTIMIZATION
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部