This paper aims to investigate the role of bi-directional shear in the mechanical behaviour of granular materials and macro-micro relations by conducting experiments and discrete element method(DEM)modelling.The bi-di...This paper aims to investigate the role of bi-directional shear in the mechanical behaviour of granular materials and macro-micro relations by conducting experiments and discrete element method(DEM)modelling.The bi-directional shear consists of a static shear consolidation and subsequent shear under constant vertical stress and constant volume conditions.A side wall node loading method is used to exert bi-directional shear of various angles.The results show that bi-directional shear can significantly influence the mechanical behaviour of granular materials.However,the relationship between bidirectional shear and mechanical responses relies on loading conditions,i.e.constant vertical stress or constant volume conditions.The stress states induced by static shear consolidation are affected by loading angles,which are enlarged by subsequent shear,consistent with the relationship between bidirectional shear and principal stresses.It provides evidence for the dissipation of stresses accompanying static liquefaction of granular materials.The presence of bi-directional principal stress rotation(PSR)is demonstrated,which evidences why the bi-directional shear of loading angles with components in two directions results in faster dissipations of stresses with static liquefaction.Contant volume shearing leads to cross-anisotropic stress and fabric at micro-contacts,but constant vertical stress shearing leads to complete anisotropic stress and fabric at micro-contacts.It explains the differentiating relationship between stress-strain responses and fabric anisotropy under these two conditions.Micromechanical signatures such as the slip state of micro-contacts and coordination number are also examined,providing further insights into understanding granular behaviour under bi-directional shear.展开更多
Understanding the Cenozoic vertical-axis rotation in the Tibetan Plateau is crucial for continental dynamic evolution. Paleomagnetic and rock magnetic investigations were carried out for the Oligocene and Miocene cont...Understanding the Cenozoic vertical-axis rotation in the Tibetan Plateau is crucial for continental dynamic evolution. Paleomagnetic and rock magnetic investigations were carried out for the Oligocene and Miocene continental rocks of the Hoh Xii basin in order to better understand the tectonic rotations of central Tibet. The study area was located in the Tongtianhe area located in the southern part of the Hoh Xil basin and northern margin of the Tanggula thrust system in central-northern Tibet. A total of 160 independently oriented paleomagnetic samples were drilled from the Tongtianhe section for this study. The magnetic properties of magnetite and hematite have been recognized by measurements of magnetic susceptibility vs. temperature curves and unbiocking temperatures. The mean directions of the Oligocene Yaxicuo Group in stratigraphic coordinates (Declination/Inclination = 354.9°/29.3°, k = 33.0, a9s = 13.5°, N =5 Sites) and of the Miocene Wudaoliang Group in stratigraphic coordinates (Declination/Inclination = 3.60/36.4°, k = 161.0, a9s = 9.7°, N =3 Sites) pass reversal tests, indicating the primary nature of the characteristic magnetizations. Our results suggested that the sampled areas in the Tuotuohe depression of the Hoh Xil basin have undergone no paleomagnetically detectable rotations under single thrusting from the Tanggula thrust system. Our findings, together with constraints from other tectonic characteristics reported by previous paleomagnetic studies, suggest tectonic rotations in the Cuoredejia and Wudaoliang depressions of the Hoh Xil basin were affected by strike-slip faulting of the Fenghuo Shan-Nangqian thrust systems. A closer examination of geological data and different vertical-axis rotation magnitudes suggest the tectonic history of the Hoh Xil basin may be controlled by thrust and strike-slip faulting since the Eocene.展开更多
This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics re...This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics relevant to the spanwise velocity fluctuation are enhanced, but other statistics are suppressed. When Nτ is larger than 0.06, all the turbulence statistics decrease significantly. Reynolds stress budgets elucidate that turbulence kinetic energy in the vertical direction is transferred into the streamwise and spanwise directions. The flow structures exhibit that the bursting processes near the bottom wall are ejected toward the free surface. Evident change of near-surface streak structures of the velocity fluctuations are revealed.展开更多
In this study,the performance of a contra rotating vertical-axis tidal-current turbine was investigated.The incompressible unsteady Reynolds-averagedNavier-Stokes(U-RANS)equations were solved via two-dimensional(2D)nu...In this study,the performance of a contra rotating vertical-axis tidal-current turbine was investigated.The incompressible unsteady Reynolds-averagedNavier-Stokes(U-RANS)equations were solved via two-dimensional(2D)numerical simulation using ANSYS Fluent computational fluid dynamics(CFD)code.An algorithm known as SIMPLE from the CFD code was used to calculate the pressure-velocity coupling and second-order finite-volume discretization for all the transport equations.The base turbine model was validated using the available experimental data.Three given scenarios for the contra rotating turbine were modeled.The contra rotating turbine performs better in a low tip speed ratio(TSR)than in a high TSR operation.In a high TSR operation,the contra rotating turbine inefficiently operates,surviving to rotate in the chaotic flow distribution.Thus,it is recommended to use contra rotating turbine as a part of new design to increase the performance of a vertical-axis tidal-current turbine with a lower TSR.展开更多
In the process of deep-sea mining,the liquid-solid flows in the vertical transportation pipeline are very complex.In the present work,an in-house solver MPSDEM-SJTU based on the improved MPS and DEM is developed for t...In the process of deep-sea mining,the liquid-solid flows in the vertical transportation pipeline are very complex.In the present work,an in-house solver MPSDEM-SJTU based on the improved MPS and DEM is developed for the simulation of hydraulic conveying.Firstly,three examples including the multilayer cylinder collapse,the Poiseuille flow and two-phase dam-break are used to validate the precision of the DEM model,the pipe flow model and MPS-DEM coupling model,respectively.Then,the hydraulic conveying with coarse particles in a vertical pipe is simulated.The solid particle distribution is presented and investigated in detail.Finally,the coupling method is successfully applied for the simulation of the liquid-solid flows in a vertical pipe with rotating blades,which shows the stability of the solver under rotating boundary conditions.This fully Lagrangian model is expected to be a new approach for analyzing hydraulic conveying.展开更多
The authors analyzed the relationship between variations of the Earth's rotation rate and the geodynamic processes within the Earth's body, including seismic activity, The rotation rate of a planet determines its un...The authors analyzed the relationship between variations of the Earth's rotation rate and the geodynamic processes within the Earth's body, including seismic activity, The rotation rate of a planet determines its uniaxial compression along the axis of rotation and the areas of various surface elements of the body. The Earth's ellipticity variations, caused naturally by the rotation rate variations, are manifested in vertical components of precise GPS measurements. Comparative analysis of these variations is considered in view of modern theoretical ideas concerning the Earth's figure. The results justify further research that is of interest for improvement of space svstems and technologiesi.展开更多
To study vertical sag requirements and factors affecting the stretched wire alignment method,the vertical sag equation is first derived theoretically.Subsequently,the influencing factors(such as the hanging weight or ...To study vertical sag requirements and factors affecting the stretched wire alignment method,the vertical sag equation is first derived theoretically.Subsequently,the influencing factors(such as the hanging weight or tension,span length,temperature change,elastic deformation,and the Earth’s rotation)of the vertical sag are summarized,and their validity is verified through actual measurements.Finally,the essential factors affecting vertical sag,i.e.,the specific strength and length,are discussed.It is believed that the vertical sag of a stretched wire is proportional to the square of the length and inversely proportional to the specific strength of the material.展开更多
The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides ...The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides the enhanced property of SINS when using the same-leveled inertial measurement units. Then, the rotating struc- ture modification is derived and augmented to resolve the un-modulated error-accumulated problem. As the insuf- ficient machine processing, the horizontal and the vertical errors on the machine surface are inevitable, and the in- volved coordinates are difficult to get the exact coincident. So, two major kinds of coordinate situation are stud- ied. The equivalent error models on gyro and acceleration outputs are built for each situation, and the impact is analyzed for compensation. The part of attitude and position error models caused by the built angle-rate error is established to calculate the un-eoincident impact. Considering these conditions of different gyro accuracy and mo- tion states simultaneously, numerical simulations are implemented. Results indicate that the SINS modulation ac- curacy is seriously affected by the combined factors on gyro accuracy and motion conditions.展开更多
基金the funding support from National Natural Science Foundation of China(Grant No.42307243)Henan Province Science and Technology Research Project(Grant No.232102321102)Shanxi Provincial Key Research and Development Project(Grant No.202102090301009).
文摘This paper aims to investigate the role of bi-directional shear in the mechanical behaviour of granular materials and macro-micro relations by conducting experiments and discrete element method(DEM)modelling.The bi-directional shear consists of a static shear consolidation and subsequent shear under constant vertical stress and constant volume conditions.A side wall node loading method is used to exert bi-directional shear of various angles.The results show that bi-directional shear can significantly influence the mechanical behaviour of granular materials.However,the relationship between bidirectional shear and mechanical responses relies on loading conditions,i.e.constant vertical stress or constant volume conditions.The stress states induced by static shear consolidation are affected by loading angles,which are enlarged by subsequent shear,consistent with the relationship between bidirectional shear and principal stresses.It provides evidence for the dissipation of stresses accompanying static liquefaction of granular materials.The presence of bi-directional principal stress rotation(PSR)is demonstrated,which evidences why the bi-directional shear of loading angles with components in two directions results in faster dissipations of stresses with static liquefaction.Contant volume shearing leads to cross-anisotropic stress and fabric at micro-contacts,but constant vertical stress shearing leads to complete anisotropic stress and fabric at micro-contacts.It explains the differentiating relationship between stress-strain responses and fabric anisotropy under these two conditions.Micromechanical signatures such as the slip state of micro-contacts and coordination number are also examined,providing further insights into understanding granular behaviour under bi-directional shear.
基金supported by the National Natural Science Foundation of China(NSFC)under grant No.41102064 and 41230313US National Science Foundation project EAR 1250444
文摘Understanding the Cenozoic vertical-axis rotation in the Tibetan Plateau is crucial for continental dynamic evolution. Paleomagnetic and rock magnetic investigations were carried out for the Oligocene and Miocene continental rocks of the Hoh Xii basin in order to better understand the tectonic rotations of central Tibet. The study area was located in the Tongtianhe area located in the southern part of the Hoh Xil basin and northern margin of the Tanggula thrust system in central-northern Tibet. A total of 160 independently oriented paleomagnetic samples were drilled from the Tongtianhe section for this study. The magnetic properties of magnetite and hematite have been recognized by measurements of magnetic susceptibility vs. temperature curves and unbiocking temperatures. The mean directions of the Oligocene Yaxicuo Group in stratigraphic coordinates (Declination/Inclination = 354.9°/29.3°, k = 33.0, a9s = 13.5°, N =5 Sites) and of the Miocene Wudaoliang Group in stratigraphic coordinates (Declination/Inclination = 3.60/36.4°, k = 161.0, a9s = 9.7°, N =3 Sites) pass reversal tests, indicating the primary nature of the characteristic magnetizations. Our results suggested that the sampled areas in the Tuotuohe depression of the Hoh Xil basin have undergone no paleomagnetically detectable rotations under single thrusting from the Tanggula thrust system. Our findings, together with constraints from other tectonic characteristics reported by previous paleomagnetic studies, suggest tectonic rotations in the Cuoredejia and Wudaoliang depressions of the Hoh Xil basin were affected by strike-slip faulting of the Fenghuo Shan-Nangqian thrust systems. A closer examination of geological data and different vertical-axis rotation magnitudes suggest the tectonic history of the Hoh Xil basin may be controlled by thrust and strike-slip faulting since the Eocene.
基金Project supported by the National Natural Science Foundation of China(Grant Nos10772166and10672151)the Foundation of China Academy of Engineering Physics(Grant No20050104)
文摘This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics relevant to the spanwise velocity fluctuation are enhanced, but other statistics are suppressed. When Nτ is larger than 0.06, all the turbulence statistics decrease significantly. Reynolds stress budgets elucidate that turbulence kinetic energy in the vertical direction is transferred into the streamwise and spanwise directions. The flow structures exhibit that the bursting processes near the bottom wall are ejected toward the free surface. Evident change of near-surface streak structures of the velocity fluctuations are revealed.
基金funded by the Directorate General of Resources for Science,Technology and Higher Education,Ministry of Research,TechnologyHigher Education of Republic Indonesia under a scheme called The Education of Master DegreeLeading to Doctoral Program for Excellent Graduates(PMDSU)undercontract number 135/SP2H/LT/DRPM/IV/2017
文摘In this study,the performance of a contra rotating vertical-axis tidal-current turbine was investigated.The incompressible unsteady Reynolds-averagedNavier-Stokes(U-RANS)equations were solved via two-dimensional(2D)numerical simulation using ANSYS Fluent computational fluid dynamics(CFD)code.An algorithm known as SIMPLE from the CFD code was used to calculate the pressure-velocity coupling and second-order finite-volume discretization for all the transport equations.The base turbine model was validated using the available experimental data.Three given scenarios for the contra rotating turbine were modeled.The contra rotating turbine performs better in a low tip speed ratio(TSR)than in a high TSR operation.In a high TSR operation,the contra rotating turbine inefficiently operates,surviving to rotate in the chaotic flow distribution.Thus,it is recommended to use contra rotating turbine as a part of new design to increase the performance of a vertical-axis tidal-current turbine with a lower TSR.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51879159 and 52131102)the National Key Research and Development Program of China(Grant No.2019YFB1704200)。
文摘In the process of deep-sea mining,the liquid-solid flows in the vertical transportation pipeline are very complex.In the present work,an in-house solver MPSDEM-SJTU based on the improved MPS and DEM is developed for the simulation of hydraulic conveying.Firstly,three examples including the multilayer cylinder collapse,the Poiseuille flow and two-phase dam-break are used to validate the precision of the DEM model,the pipe flow model and MPS-DEM coupling model,respectively.Then,the hydraulic conveying with coarse particles in a vertical pipe is simulated.The solid particle distribution is presented and investigated in detail.Finally,the coupling method is successfully applied for the simulation of the liquid-solid flows in a vertical pipe with rotating blades,which shows the stability of the solver under rotating boundary conditions.This fully Lagrangian model is expected to be a new approach for analyzing hydraulic conveying.
基金supported by the Russian Foundation for Basic Research(RFBR),grant 15-05-00089
文摘The authors analyzed the relationship between variations of the Earth's rotation rate and the geodynamic processes within the Earth's body, including seismic activity, The rotation rate of a planet determines its uniaxial compression along the axis of rotation and the areas of various surface elements of the body. The Earth's ellipticity variations, caused naturally by the rotation rate variations, are manifested in vertical components of precise GPS measurements. Comparative analysis of these variations is considered in view of modern theoretical ideas concerning the Earth's figure. The results justify further research that is of interest for improvement of space svstems and technologiesi.
基金Large Research Infrastructures“China initiative Accelerator Driven System”(No.2017-000052-75-01-000590).
文摘To study vertical sag requirements and factors affecting the stretched wire alignment method,the vertical sag equation is first derived theoretically.Subsequently,the influencing factors(such as the hanging weight or tension,span length,temperature change,elastic deformation,and the Earth’s rotation)of the vertical sag are summarized,and their validity is verified through actual measurements.Finally,the essential factors affecting vertical sag,i.e.,the specific strength and length,are discussed.It is believed that the vertical sag of a stretched wire is proportional to the square of the length and inversely proportional to the specific strength of the material.
基金Supported by the National Natural Science Foundation of China(60702003)the Aviation Science Foundation(20080852011)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(20070287045)the NUAA Research Fundation(NS2010066)~~
文摘The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides the enhanced property of SINS when using the same-leveled inertial measurement units. Then, the rotating struc- ture modification is derived and augmented to resolve the un-modulated error-accumulated problem. As the insuf- ficient machine processing, the horizontal and the vertical errors on the machine surface are inevitable, and the in- volved coordinates are difficult to get the exact coincident. So, two major kinds of coordinate situation are stud- ied. The equivalent error models on gyro and acceleration outputs are built for each situation, and the impact is analyzed for compensation. The part of attitude and position error models caused by the built angle-rate error is established to calculate the un-eoincident impact. Considering these conditions of different gyro accuracy and mo- tion states simultaneously, numerical simulations are implemented. Results indicate that the SINS modulation ac- curacy is seriously affected by the combined factors on gyro accuracy and motion conditions.