To resist the side chaimel attacks of elliptic curve cryptography, a new fast and secure point multiplication algorithm is proposed. The algorithm is based on a particular kind of addition chains involving only additi...To resist the side chaimel attacks of elliptic curve cryptography, a new fast and secure point multiplication algorithm is proposed. The algorithm is based on a particular kind of addition chains involving only additions, providing a natural protection against side channel attacks. Moreover, the new addition formulae that take into account the specific structure of those chains making point multiplication very efficient are proposed. The point multiplication algorithm only needs 1 719 multiplications for the SAC260 of 160-bit integers. For chains of length from 280 to 260, the proposed method outperforms all the previous methods with a gain of 26% to 31% over double-and add, 16% to22% over NAF, 7% to 13% over4-NAF and 1% to 8% over the present best algorithm--double-base chain.展开更多
The last decade witnessed rapid increase in multimedia and other applications that require transmitting and protecting huge amount of data streams simultaneously.For such applications,a high-performance cryptosystem i...The last decade witnessed rapid increase in multimedia and other applications that require transmitting and protecting huge amount of data streams simultaneously.For such applications,a high-performance cryptosystem is compulsory to provide necessary security services.Elliptic curve cryptosystem(ECC)has been introduced as a considerable option.However,the usual sequential implementation of ECC and the standard elliptic curve(EC)form cannot achieve required performance level.Moreover,the widely used Hardware implementation of ECC is costly option and may be not affordable.This research aims to develop a high-performance parallel software implementation for ECC.To achieve this,many experiments were performed to examine several factors affecting ECC performance including the projective coordinates,the scalar multiplication algorithm,the elliptic curve(EC)form,and the parallel implementation.The ECC performance was analyzed using the different factors to tune-up them and select the best choices to increase the speed of the cryptosystem.Experimental results illustrated that parallel Montgomery ECC implementation using homogenous projection achieves the highest performance level,since it scored the shortest time delay for ECC computations.In addition,results showed thatNAF algorithm consumes less time to perform encryption and scalar multiplication operations in comparison withMontgomery ladder and binarymethods.Java multi-threading technique was adopted to implement ECC computations in parallel.The proposed multithreaded Montgomery ECC implementation significantly improves the performance level compared to previously presented parallel and sequential implementations.展开更多
Side-channel attacks (SCA) may exploit leakage information to break cryptosystems. In this paper we present a new SCA resistant Elliptic Curve scalar multiplication algorithm. The proposed algorithm, builds a sequen...Side-channel attacks (SCA) may exploit leakage information to break cryptosystems. In this paper we present a new SCA resistant Elliptic Curve scalar multiplication algorithm. The proposed algorithm, builds a sequence of bit-strings representing the scalar k, characterized by the fact that all bit-strings are different from zero; this property will ensure a uniform computation behavior for the algorithm, and thus will make it secure against simple power analysis attacks (SPA). With other randomization techniques, the proposed countermeasures do not penalize the computation time. The proposed scheme is more efficient than MOEller's one, its cost being about 5% to 10% smaller than MOEller's one.展开更多
基金The National Natural Science Foundation of China (No.60473029,60673072).
文摘To resist the side chaimel attacks of elliptic curve cryptography, a new fast and secure point multiplication algorithm is proposed. The algorithm is based on a particular kind of addition chains involving only additions, providing a natural protection against side channel attacks. Moreover, the new addition formulae that take into account the specific structure of those chains making point multiplication very efficient are proposed. The point multiplication algorithm only needs 1 719 multiplications for the SAC260 of 160-bit integers. For chains of length from 280 to 260, the proposed method outperforms all the previous methods with a gain of 26% to 31% over double-and add, 16% to22% over NAF, 7% to 13% over4-NAF and 1% to 8% over the present best algorithm--double-base chain.
基金Authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding and supporting this work through Graduate Student Research Support Program.
文摘The last decade witnessed rapid increase in multimedia and other applications that require transmitting and protecting huge amount of data streams simultaneously.For such applications,a high-performance cryptosystem is compulsory to provide necessary security services.Elliptic curve cryptosystem(ECC)has been introduced as a considerable option.However,the usual sequential implementation of ECC and the standard elliptic curve(EC)form cannot achieve required performance level.Moreover,the widely used Hardware implementation of ECC is costly option and may be not affordable.This research aims to develop a high-performance parallel software implementation for ECC.To achieve this,many experiments were performed to examine several factors affecting ECC performance including the projective coordinates,the scalar multiplication algorithm,the elliptic curve(EC)form,and the parallel implementation.The ECC performance was analyzed using the different factors to tune-up them and select the best choices to increase the speed of the cryptosystem.Experimental results illustrated that parallel Montgomery ECC implementation using homogenous projection achieves the highest performance level,since it scored the shortest time delay for ECC computations.In addition,results showed thatNAF algorithm consumes less time to perform encryption and scalar multiplication operations in comparison withMontgomery ladder and binarymethods.Java multi-threading technique was adopted to implement ECC computations in parallel.The proposed multithreaded Montgomery ECC implementation significantly improves the performance level compared to previously presented parallel and sequential implementations.
基金Supported by the National Natural ScienceFoundation of China (60473029)
文摘Side-channel attacks (SCA) may exploit leakage information to break cryptosystems. In this paper we present a new SCA resistant Elliptic Curve scalar multiplication algorithm. The proposed algorithm, builds a sequence of bit-strings representing the scalar k, characterized by the fact that all bit-strings are different from zero; this property will ensure a uniform computation behavior for the algorithm, and thus will make it secure against simple power analysis attacks (SPA). With other randomization techniques, the proposed countermeasures do not penalize the computation time. The proposed scheme is more efficient than MOEller's one, its cost being about 5% to 10% smaller than MOEller's one.