The thickness-shear (TS) and thickness-twist (TT) vibrations of partially electroded AT-cut quartz plates for acoustic wave resonator and filter applications are theoretically studied. The plates have structural v...The thickness-shear (TS) and thickness-twist (TT) vibrations of partially electroded AT-cut quartz plates for acoustic wave resonator and filter applications are theoretically studied. The plates have structural variations in one of the two in-plane directions of the plates only. The scalar differential equations derived by Tiersten and Smythe for electroded and unelectroded AT-cut quartz plates are used, resulting in free vibration resonant frequencies and mode shapes for both fundamental and overtone fam- ilies of modes. The trapped modes with vibrations, mainly confined in the electroded areas, are found to exist in both the resonator and the filter structures. The numerical results for the trapped modes are presented for different aspect ratios of electrodes and material properties, providing a reference to the design and optimization of quartz acous- tic wave resonators and filters.展开更多
基金supported by the Program for New Century Excellent Talents in Universities of the Ministry of Education of China(No.NCET-12-0625)the National Natural Science Foundation of China(Nos.11232007 and 11502108)+2 种基金the Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.SBK2014010134)the Fundamental Research Funds for the Central Universities(Nos.NE2013101 and NZ2013307)funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The thickness-shear (TS) and thickness-twist (TT) vibrations of partially electroded AT-cut quartz plates for acoustic wave resonator and filter applications are theoretically studied. The plates have structural variations in one of the two in-plane directions of the plates only. The scalar differential equations derived by Tiersten and Smythe for electroded and unelectroded AT-cut quartz plates are used, resulting in free vibration resonant frequencies and mode shapes for both fundamental and overtone fam- ilies of modes. The trapped modes with vibrations, mainly confined in the electroded areas, are found to exist in both the resonator and the filter structures. The numerical results for the trapped modes are presented for different aspect ratios of electrodes and material properties, providing a reference to the design and optimization of quartz acous- tic wave resonators and filters.