In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t...In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.展开更多
Under the assumption that the ordering cone has a nonempty interior and is separable (or the feasible set has a nonempty interior and is separable), we give scalarization theorems on Benson proper effciency. Applyin...Under the assumption that the ordering cone has a nonempty interior and is separable (or the feasible set has a nonempty interior and is separable), we give scalarization theorems on Benson proper effciency. Applying the results to vector optimization problems with nearly cone-subconvexlike set-valued maps, we obtain scalarization theorems and Lagrange multiplier theorems for Benson proper effcient solutions.展开更多
We propose a new scalarization method which consists in constructing, for a given multiobjective optimization problem, a single scalarization function, whose global minimum points are exactly vector critical points of...We propose a new scalarization method which consists in constructing, for a given multiobjective optimization problem, a single scalarization function, whose global minimum points are exactly vector critical points of the original problem. This equivalence holds globally and enables one to use global optimization algorithms (for example, classical genetic algorithms with “roulette wheel” selection) to produce multiple solutions of the multiobjective problem. In this article we prove the mentioned equivalence and show that, if the ordering cone is polyhedral and the function being optimized is piecewise differentiable, then computing the values of a scalarization function reduces to solving a quadratic programming problem. We also present some preliminary numerical results pertaining to this new method.展开更多
In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized pr...In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.展开更多
Detecting dark matter remains one of the most challenging problems in modern physics.We propose a method to detect the coupling of ultralight scalar dark matter to quarks and gluons,as well as the coupling of ultralig...Detecting dark matter remains one of the most challenging problems in modern physics.We propose a method to detect the coupling of ultralight scalar dark matter to quarks and gluons,as well as the coupling of ultralight axion dark matter to gluons,using long-baseline atom interferometers.Interactions between ultralight scalar and axion dark matter with quarks and gluons can induce oscillations in nuclear charge radii,consequently causing oscillations in atomic transition frequencies.We calculate the differential phase shift produced by these dark matter interactions in long-baseline atom interferometers,presenting constraints on the scalar dark matter coupling parameters dg and d^m,as well as on the axion dark matter coupling parameter 1/fa.Our results are anticipated to improve existing bounds and complement bounds from other experiments.展开更多
This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation ca...P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation can also be used to better understand and distinguish wave types in complex media.At present,the methods for separating wave modes in anisotropic media mainly include spatial nonstationary filtering,low-rank approximation,and vector Poisson equation.Most of these methods require multiple Fourier transforms or the calculation of large matrices,which require high computational costs for problems with large scale.In this paper,an efficient method is proposed to separate the wave mode for anisotropic media by using a scalar anisotropic Poisson operator in the spatial domain.For 2D problems,the computational complexity required by this method is 1/2 of the methods based on solving a vector Poisson equation.Therefore,compared with existing methods based on pseudoHelmholtz decomposition operators,this method can significantly reduce the computational cost.Numerical examples also show that the P and S waves decomposed by this method not only have the correct amplitude and phase relative to the input wavefield but also can reduce the computational complexity significantly.展开更多
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)+2 种基金Basic Research Plan of Shanxi Province(202203021211129)Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)。
文摘In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.
基金Supported by the National Natural Science Foundation of China (10571035,10871141)
文摘Under the assumption that the ordering cone has a nonempty interior and is separable (or the feasible set has a nonempty interior and is separable), we give scalarization theorems on Benson proper effciency. Applying the results to vector optimization problems with nearly cone-subconvexlike set-valued maps, we obtain scalarization theorems and Lagrange multiplier theorems for Benson proper effcient solutions.
文摘We propose a new scalarization method which consists in constructing, for a given multiobjective optimization problem, a single scalarization function, whose global minimum points are exactly vector critical points of the original problem. This equivalence holds globally and enables one to use global optimization algorithms (for example, classical genetic algorithms with “roulette wheel” selection) to produce multiple solutions of the multiobjective problem. In this article we prove the mentioned equivalence and show that, if the ordering cone is polyhedral and the function being optimized is piecewise differentiable, then computing the values of a scalarization function reduces to solving a quadratic programming problem. We also present some preliminary numerical results pertaining to this new method.
文摘In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.
基金Shandong Provincial Natural Science Foundation(Grant No.ZR2023QA143)Startup Foundation for Doctors of Shandong University of Aeronautics(Grant No.2022Y18).
文摘Detecting dark matter remains one of the most challenging problems in modern physics.We propose a method to detect the coupling of ultralight scalar dark matter to quarks and gluons,as well as the coupling of ultralight axion dark matter to gluons,using long-baseline atom interferometers.Interactions between ultralight scalar and axion dark matter with quarks and gluons can induce oscillations in nuclear charge radii,consequently causing oscillations in atomic transition frequencies.We calculate the differential phase shift produced by these dark matter interactions in long-baseline atom interferometers,presenting constraints on the scalar dark matter coupling parameters dg and d^m,as well as on the axion dark matter coupling parameter 1/fa.Our results are anticipated to improve existing bounds and complement bounds from other experiments.
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
基金supported by the National Key R&D Program of China(No.2018YFA0702505)the project of CNOOC Limited(Grant No.CNOOC-KJ GJHXJSGG YF 2022-01)+1 种基金R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting application,2022DQ0604-02)NSFC(Grant Nos.U23B20159,41974142,42074129,12001311)。
文摘P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation can also be used to better understand and distinguish wave types in complex media.At present,the methods for separating wave modes in anisotropic media mainly include spatial nonstationary filtering,low-rank approximation,and vector Poisson equation.Most of these methods require multiple Fourier transforms or the calculation of large matrices,which require high computational costs for problems with large scale.In this paper,an efficient method is proposed to separate the wave mode for anisotropic media by using a scalar anisotropic Poisson operator in the spatial domain.For 2D problems,the computational complexity required by this method is 1/2 of the methods based on solving a vector Poisson equation.Therefore,compared with existing methods based on pseudoHelmholtz decomposition operators,this method can significantly reduce the computational cost.Numerical examples also show that the P and S waves decomposed by this method not only have the correct amplitude and phase relative to the input wavefield but also can reduce the computational complexity significantly.