This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou Ci...This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou City in China,its eastern region(Ganzhou East),and Ruijin County in Ganzhou East were chosen.Different mapping unit scales are represented by grid units with spatial resolution of 30 and 60 m,as well as slope units that were extracted by multi-scale segmentation method.The 3855 landslide locations and 21 typical environmental factors in Ganzhou City are first determined to create spatial datasets with input-outputs.Then,landslide susceptibility maps(LSMs)of Ganzhou City,Ganzhou East and Ruijin County are pro-duced using a support vector machine(SVM)and random forest(RF),respectively.The LSMs of the above three regions are then extracted by mask from the LSM of Ganzhou City,along with the LSMs of Ruijin County from Ganzhou East.Additionally,LSMs of Ruijin at various mapping unit scales are generated in accordance.Accuracy and landslide suscepti-bility indexes(LSIs)distribution are used to express LSP uncertainties.The LSP uncertainties under grid units significantly decrease as study area scales decrease from Ganzhou City,Ganzhou East to Ruijin County,whereas those under slope units are less affected by study area scales.Of course,attentions should also be paid to the broader representativeness of large study areas.The LSP accuracy of slope units increases by about 6%–10%compared with those under grid units with 30 m and 60 m resolution in the same study area's scale.The significance of environmental factors exhibits an averaging trend as study area scale increases from small to large.The importance of environmental factors varies greatly with the 60 m grid unit,but it tends to be consistent to some extent in the 30 m grid unit and the slope unit.展开更多
Natural gas hydrate is an energy resource for methane that has a carbon quantity twice more than all traditional fossil fuels combined.However,their practical application in the field has been limited due to the chall...Natural gas hydrate is an energy resource for methane that has a carbon quantity twice more than all traditional fossil fuels combined.However,their practical application in the field has been limited due to the challenges of long-term preparation,high costs and associated risks.Experimental studies,on the other hand,offer a safe and cost-effective means of exploring the mechanisms of hydrate dissociation and optimizing exploitation conditions.Gas hydrate decomposition is a complicated process along with intrinsic kinetics,mass transfer and heat transfer,which are the influencing factors for hydrate decomposition rate.The identification of the rate-limiting factor for hydrate dissociation during depressurization varies with the scale of the reservoir,making it challenging to extrapolate findings from laboratory experiments to the actual exploitation.This review aims to summarize current knowledge of investigations on hydrate decomposition on the subject of the research scale(core scale,middle scale,large scale and field tests)and to analyze determining factors for decomposition rate,considering the various research scales and their associated influencing factors.展开更多
Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonato...Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonators.These resonators can be remotely excited and read out using free-space structures,simplifying the process of sensing.In this study,we present a submicron-scale temperature sensor with a remarkable sensitivity up to 185 pm/℃based on a trian-gular MAPbI3 nanoplatelet(NPL)laser.Notably,as temperature changes,the peak wavelength of the laser line shifts lin-early.This unique characteristic allows for precise temperature sensing by tracking the peak wavelength of the NPL laser.The optical modes are confined within the perovskite NPL,which measures just 85 nm in height,due to total internal reflec-tion.Our NPL laser boasts several key features,including a high Q of~2610 and a low laser threshold of about 19.8μJ·cm^(−2).The combination of exceptional sensitivity and ultra-small size makes our WGM device an ideal candidate for integration into systems that demand compact temperature sensors.This advancement paves the way for significant prog-ress in the development of ultrasmall temperature sensors,opening new possibilities across various fields.展开更多
The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’perfo...The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.展开更多
Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-e...Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-energy lithium-ion batteries.Various strategies have been designed to synthesize silicon/carbon composites for tackling the issues of anode pulverization and poor stability in the anodes,thereby improving the lithium storage ability.The effect of the regulation method at each scale on the final negative electrode performance remains unclear.However,it has not been fully clarified how the regulation methods at each scale influence the final anode performance.This review will categorize the materials structure into three scales:molecular scale,nanoscale,and microscale.First,the review will examine modification methods at the molecular scale,focusing on the interfacial bonding force between silicon and carbon.Next,it will summarize various nanostructures and special shapes in the nanoscale to explore the construction of silicon/carbon composites.Lastly,the review will provide an analysis of microscale control approaches,focusing on the formation of composite particle with micron size and the utilization of micro-Si.This review provides a comprehensive overview of the multi-scale design of silicon/carbon composite anode materials and their optimization strategies to enhance the performance of lithium-ion batteries.展开更多
Geological discontinuity(GD)plays a pivotal role in determining the catastrophic mechanical failure of jointed rock masses.Accurate and efficient acquisition of GD networks is essential for characterizing and understa...Geological discontinuity(GD)plays a pivotal role in determining the catastrophic mechanical failure of jointed rock masses.Accurate and efficient acquisition of GD networks is essential for characterizing and understanding the progressive damage mechanisms of slopes based on monitoring image data.Inspired by recent advances in computer vision,deep learning(DL)models have been widely utilized for image-based fracture identification.The multi-scale characteristics,image resolution and annotation quality of images will cause a scale-space effect(SSE)that makes features indistinguishable from noise,directly affecting the accuracy.However,this effect has not received adequate attention.Herein,we try to address this gap by collecting slope images at various proportional scales and constructing multi-scale datasets using image processing techniques.Next,we quantify the intensity of feature signals using metrics such as peak signal-to-noise ratio(PSNR)and structural similarity(SSIM).Combining these metrics with the scale-space theory,we investigate the influence of the SSE on the differentiation of multi-scale features and the accuracy of recognition.It is found that augmenting the image's detail capacity does not always yield benefits for vision-based recognition models.In light of these observations,we propose a scale hybridization approach based on the diffusion mechanism of scale-space representation.The results show that scale hybridization strengthens the tolerance of multi-scale feature recognition under complex environmental noise interference and significantly enhances the recognition accuracy of GD.It also facilitates the objective understanding,description and analysis of the rock behavior and stability of slopes from the perspective of image data.展开更多
The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condit...The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.展开更多
Background:In recent years,there has been increased research interest in both smartphone addiction and social media addiction as well as the development of psychometric instruments to assess these constructs.However,t...Background:In recent years,there has been increased research interest in both smartphone addiction and social media addiction as well as the development of psychometric instruments to assess these constructs.However,there is a lack of psychometric evaluation for instruments assessing smartphone addiction and social media addiction in Thailand.The present study evaluated the psychometric properties and gender measurement invariance of the Thai version of the Smartphone Application-Based Addiction Scale(SABAS)and Bergen Social Media Addiction Scale(BSMAS).Method:A total of 801 Thai university students participated in an online survey from January 2022 to July 2022 which included demographic information,SABAS,BSMAS,and the Internet Gaming Disorder Scale-Short Form(IGDS9-SF).Results:Confirmatory Factor Analyses(CFAs)found that both the SABAS and BSMAS had a one-factor structure.Findings demonstrated adequate psychometric properties of both instruments and also supported measurement invariance across genders.Moreover,scores on the SABAS and BSMAS were correlated with scores on the IGDS9-SF.Conclusion:The results indicated that the SABAS and BSMAS are useful psychometric instruments for assessing the risk of smartphone addiction and social media addiction among Thai young adults.展开更多
Background: Self-monitoring is important for recognizing the situations one is facing and assessing one’s own competence to respond appropriately to situations that require multitasking. Purpose: This study aimed to ...Background: Self-monitoring is important for recognizing the situations one is facing and assessing one’s own competence to respond appropriately to situations that require multitasking. Purpose: This study aimed to examine the surface and content validity of the Advanced Beginner Nurses’ Self-Monitoring Scale While Multitasking and refine the scale items accordingly. It is expected that the development of such scale will allow for reflection on advanced beginner nurses’ response to multitasking, leading to further capacity building. Methods: The surface validity of 96 items of the Advanced Beginner Nurses’ Self-Monitoring Scale While Multitasking was examined at a meeting with five expert researchers. Five researchers and five nurses examined the items’ content using an item-level content validity index through a questionnaire survey. Results and Conclusion: The Advanced Beginner Nurses’ Self-Monitoring Scale While Multitasking was organized into 73 items that were refined into scales with surface and content validity. Consequently, five sub-concepts were identified: recognizing the situation one’s facing, seeing one’s self from multiple perspectives, devising concrete strategies depending on the situation, considering a predictable time schedule, and being aware of the situation surrounding one’s self. In the future, it will be necessary to examine the reliability and validity of the scale.展开更多
Nonalcoholic fatty liver disease(NAFLD)is the most common chronic liver disorder,and dietary and lifestyle interventions remain the mainstays of NAFLD therapy.Zeng et al established a prediction system to evaluate adh...Nonalcoholic fatty liver disease(NAFLD)is the most common chronic liver disorder,and dietary and lifestyle interventions remain the mainstays of NAFLD therapy.Zeng et al established a prediction system to evaluate adherence to lifestyle interventions in patients with NAFLD and choose optimal management.Here,we discuss the application scenarios of the scale and the areas warranting further attention,aiming to provide a possible reference for clinical recommend-ations.展开更多
The lethal dose LD<sub>50</sub> represents the most important experimental value for acute toxicity. The simple logarithmic calculation of -log<sub>10</sub> LD<sub>50</sub> = value ...The lethal dose LD<sub>50</sub> represents the most important experimental value for acute toxicity. The simple logarithmic calculation of -log<sub>10</sub> LD<sub>50</sub> = value leads to the possible poison power pLD. As with the pH or pK value, respectively, for acid or the scale of earthquake intensities the logarithm helps making large differences of orders of magnitude easier to understand since they are more comparable. The higher the pLD value, the higher is the power of poison. An increase of the pLD value by 1 stands for a tenfold increase in toxicity. The lethal acute dose for water, one of the most important and at the same time non-toxic substances of all, is about one tenth of the body weight. This leads to a possible pLD value for water of 1, an ideal starting value for a logarithmic poison scale.展开更多
Modern technology for developing new items made from renewable resources is becoming more and more popular as a result of rising environmental concern.Recently,contemporary polymer composites have included the hybridi...Modern technology for developing new items made from renewable resources is becoming more and more popular as a result of rising environmental concern.Recently,contemporary polymer composites have included the hybridization of natural fibers with synthetic ones,along with the inclusion of a variety of biowaste filler for developing sustainable goods.In this work,the kenaf/glass hybrid polyester composites are strengthened by the addition of fish scale(FS),which is taken from the fishs outermost layer of skin.Five different stacked-order laminates,such as KKKK,KGKG,GKKG,KGGK,and GGGG,are fabricated by using the hand lay-up method with four different weight concentrations of filler content:0%,5%,10%,and 15%.Mechanical possessions such as tensile,flexural,impact strength and micro-hardness have been evaluated through experimentation in accordance with ASTM standards.The experimental findings revealed that,the tensile strength and micro-hardness value of KGKG laminates with 15wt% of FS filler are found to be maximum of 118.72 MPa and 17.82 HV respectively which are 39.67%and 26.11%greater than that of KGKG laminates without FS filler.However,the flexural and impact strength of same laminates with 10 wt% FS filler exhibited a maximum value of 142.77 MPa and 62.08 kJ/m^(2).In order to corroborate its applicability for structural and building materials in open environment,the dimensional stability of the composite has been studied through moisture absorption test.The influences of FS filler loading on dimensional stability and resistance to moisture absorption capacity of laminates are also investigated.The experimental results reflected that the addition of FS-filler has significantly improved the dimensional stability of the laminates in moist environment by reducing the moisture absorption tendency.To further support the mode of failures,a fractography investigation of fractured surfaces was conducted.展开更多
Small-scale farming accounts for 78% of total agricultural production in Kenya and contributes to 23.5% of the country’s GDP. Their crop production activities are mostly rainfed subsistence with any surplus being sol...Small-scale farming accounts for 78% of total agricultural production in Kenya and contributes to 23.5% of the country’s GDP. Their crop production activities are mostly rainfed subsistence with any surplus being sold to bring in some income. Timely decisions on farm practices such as farm preparation and planting are critical determinants of the seasonal outcomes. In Kenya, most small-scale farmers have no reliable source of information that would help them make timely and accurate decisions. County governments have extension officers who are mandated with giving farmers advisory services to farmers but they are not able to reach most farmers due to facilitation constraints. The mode and format of sharing information is also critical since it’s important to ensure that it’s timely, well-understood and usable. This study sought to assess access to geospatial derived and other crop production information by farmers in four selected counties of Kenya. Specific objectives were to determine the profile of small-scale farmers in terms of age, education and farm size;to determine the type of information that is made available to them by County and Sub-County extension officers including the format and mode of provision;and to determine if the information provided was useful in terms of accuracy, timeliness and adequacy. The results indicated that over 80% of the farmers were over 35 years of age and over 56% were male. Majority had attained primary education (34%) or secondary education (29%) and most farmers in all the counties grew maize (71%). Notably, fellow farmers were a source of information (71%) with the frequency of sharing information being mostly seasonal (37%) and when information was available (43%). Over 66% of interviewed farmers indicating that they faced challenges while using provided information. The results from the study are insightful and helpful in determining effective ways of providing farmers with useful information to ensure maximum benefits.展开更多
Cultural ancient roads,known in Chinese as gudao,serve as heritage trails that carry historical exchanges across various regions in China.Due to their extensive preservation,wide geographical distribution,diverse them...Cultural ancient roads,known in Chinese as gudao,serve as heritage trails that carry historical exchanges across various regions in China.Due to their extensive preservation,wide geographical distribution,diverse thematic variations,and considerable tourist appeal,these paths have emerged as representative heritage trails,increasingly transforming into a novel tourism product experience that is highly favored by tourists and recognized by government authorities.However,research on ancient roads for tourism in China currently lacks a systematic theoretical framework,as well as relevant policies,regulations,and standards to guide their practical development.Therefore,there is a pressing need to draw upon international best practices and conduct foundational research to develop an experience element system that aligns with the perceptions,behaviors,and consumption characteristics of Chinese tourists,thereby advancing theoretical exploration in this field.This study focuses on the representative Ancient Shu Road as a case study and employs a mixed-method approach that integrates qualitative and quantitative research.It aims to construct a tourist-centric scale for the experience elements of ancient road tourism while analyzing the interactive relationship between these experience elements and tourist needs.This study addresses a significant gap in the development of indicator systems for domestic studies of ancient road tourism experiences.Ultimately,the study establishes a comprehensive scale that encompasses three core categories—trail resources and environment,facilities and services,and modes of tourism activities—along with eight primary dimensions:core resources,surrounding cultural environment,surrounding natural environment,tourism reception facilities and services,infrastructure and support services,information facilities and information services,and outdoor and recreational activities.This scale consists of thirty-two specific items,providing a robust reference for future research endeavors.Additionally,the study proposes specific development strategies related to key mechanisms,spatial configuration,and facility construction to enhance the overall development of ancient road tourism.展开更多
The long-term dynamic evolution and underlying mechanisms of coastal landscape pattern stability,driven by strong anthropogenic interference and consequently climate change,are topics of major interest in national and...The long-term dynamic evolution and underlying mechanisms of coastal landscape pattern stability,driven by strong anthropogenic interference and consequently climate change,are topics of major interest in national and international scientific research.Guangdong Province,located in southeastern China,has been undergoing rapid urbanization over several decades.In this study,we quantitatively determined the scale threshold characteristics of coastal landscape pattern stability in Guangdong Province,from the dual perspective of spatial heterogeneity and spatial autocorrelation.An analysis of the spatiotemporal evolution of the coastal landscape was conducted after the optical scale was determined.Then,we applied the geodetector statistical method to quantitatively explore the mechanisms underlying coastal landscape pattern stability.Based on the inflection point of landscape metrics and the maximum value of the MoranⅠindex,the optimal scale for analyzing coastal landscape pattern stability in Guangdong Province was 240 m×240 m.Within the past several decades,coastal landscape pattern stability increased slightly and then decreased,with a turning point around 2005.The most significant variations in coastal landscape pattern stability were observed in the transition zone of rural-urban expansion.A q-statistics analysis showed that the explanatory power of paired factors was greater than that of a single driving factor;the paired factors with the greatest impact on coastal landscape pattern stability in Guangdong Province were the change in gross industrial output and change in average annual precipitation from 2010 to 2015,based on a q value of 0.604.These results will contribute to future efforts to achieve sustainable coastal development and provide a scientific basis and technical support for the rational planning and utilization of resources in large estuarine areas,including marine disaster prevention and seawall ecological restoration.展开更多
基金the Natural Science Foundation of China(41807285)Interdisciplinary Innovation Fund of Natural Science,NanChang University(9167-28220007-YB2107).
文摘This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou City in China,its eastern region(Ganzhou East),and Ruijin County in Ganzhou East were chosen.Different mapping unit scales are represented by grid units with spatial resolution of 30 and 60 m,as well as slope units that were extracted by multi-scale segmentation method.The 3855 landslide locations and 21 typical environmental factors in Ganzhou City are first determined to create spatial datasets with input-outputs.Then,landslide susceptibility maps(LSMs)of Ganzhou City,Ganzhou East and Ruijin County are pro-duced using a support vector machine(SVM)and random forest(RF),respectively.The LSMs of the above three regions are then extracted by mask from the LSM of Ganzhou City,along with the LSMs of Ruijin County from Ganzhou East.Additionally,LSMs of Ruijin at various mapping unit scales are generated in accordance.Accuracy and landslide suscepti-bility indexes(LSIs)distribution are used to express LSP uncertainties.The LSP uncertainties under grid units significantly decrease as study area scales decrease from Ganzhou City,Ganzhou East to Ruijin County,whereas those under slope units are less affected by study area scales.Of course,attentions should also be paid to the broader representativeness of large study areas.The LSP accuracy of slope units increases by about 6%–10%compared with those under grid units with 30 m and 60 m resolution in the same study area's scale.The significance of environmental factors exhibits an averaging trend as study area scale increases from small to large.The importance of environmental factors varies greatly with the 60 m grid unit,but it tends to be consistent to some extent in the 30 m grid unit and the slope unit.
基金Financial support received from the National Natural Science Foundation of China(22178379)the National Key Research and Development Program of China(2021YFC2800902)is gratefully acknowledged.
文摘Natural gas hydrate is an energy resource for methane that has a carbon quantity twice more than all traditional fossil fuels combined.However,their practical application in the field has been limited due to the challenges of long-term preparation,high costs and associated risks.Experimental studies,on the other hand,offer a safe and cost-effective means of exploring the mechanisms of hydrate dissociation and optimizing exploitation conditions.Gas hydrate decomposition is a complicated process along with intrinsic kinetics,mass transfer and heat transfer,which are the influencing factors for hydrate decomposition rate.The identification of the rate-limiting factor for hydrate dissociation during depressurization varies with the scale of the reservoir,making it challenging to extrapolate findings from laboratory experiments to the actual exploitation.This review aims to summarize current knowledge of investigations on hydrate decomposition on the subject of the research scale(core scale,middle scale,large scale and field tests)and to analyze determining factors for decomposition rate,considering the various research scales and their associated influencing factors.
文摘Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonators.These resonators can be remotely excited and read out using free-space structures,simplifying the process of sensing.In this study,we present a submicron-scale temperature sensor with a remarkable sensitivity up to 185 pm/℃based on a trian-gular MAPbI3 nanoplatelet(NPL)laser.Notably,as temperature changes,the peak wavelength of the laser line shifts lin-early.This unique characteristic allows for precise temperature sensing by tracking the peak wavelength of the NPL laser.The optical modes are confined within the perovskite NPL,which measures just 85 nm in height,due to total internal reflec-tion.Our NPL laser boasts several key features,including a high Q of~2610 and a low laser threshold of about 19.8μJ·cm^(−2).The combination of exceptional sensitivity and ultra-small size makes our WGM device an ideal candidate for integration into systems that demand compact temperature sensors.This advancement paves the way for significant prog-ress in the development of ultrasmall temperature sensors,opening new possibilities across various fields.
基金the National Key Research and Development Program of China(Grant No.2021YFA1402102)the National Natural Science Foundation of China(Grant No.62171249)the Fund by Tsinghua University Initiative Scientific Research Program.
文摘The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved.
基金funded by the Research Fund of State Key Laboratory of Mesoscience and Engineering (MESO-23-T03)the National Natural Science Foundation (22278423)+1 种基金the National Key Research and Development Program of China (2022YFB3805602)the Science Foundation of China University of Petroleum,Beijing (2462021QNXZ007)。
文摘Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-energy lithium-ion batteries.Various strategies have been designed to synthesize silicon/carbon composites for tackling the issues of anode pulverization and poor stability in the anodes,thereby improving the lithium storage ability.The effect of the regulation method at each scale on the final negative electrode performance remains unclear.However,it has not been fully clarified how the regulation methods at each scale influence the final anode performance.This review will categorize the materials structure into three scales:molecular scale,nanoscale,and microscale.First,the review will examine modification methods at the molecular scale,focusing on the interfacial bonding force between silicon and carbon.Next,it will summarize various nanostructures and special shapes in the nanoscale to explore the construction of silicon/carbon composites.Lastly,the review will provide an analysis of microscale control approaches,focusing on the formation of composite particle with micron size and the utilization of micro-Si.This review provides a comprehensive overview of the multi-scale design of silicon/carbon composite anode materials and their optimization strategies to enhance the performance of lithium-ion batteries.
基金supported by the National Natural Science Foundation of China(Grant No.52090081)the State Key Laboratory of Hydro-science and Hydraulic Engineering(Grant No.2021-KY-04).
文摘Geological discontinuity(GD)plays a pivotal role in determining the catastrophic mechanical failure of jointed rock masses.Accurate and efficient acquisition of GD networks is essential for characterizing and understanding the progressive damage mechanisms of slopes based on monitoring image data.Inspired by recent advances in computer vision,deep learning(DL)models have been widely utilized for image-based fracture identification.The multi-scale characteristics,image resolution and annotation quality of images will cause a scale-space effect(SSE)that makes features indistinguishable from noise,directly affecting the accuracy.However,this effect has not received adequate attention.Herein,we try to address this gap by collecting slope images at various proportional scales and constructing multi-scale datasets using image processing techniques.Next,we quantify the intensity of feature signals using metrics such as peak signal-to-noise ratio(PSNR)and structural similarity(SSIM).Combining these metrics with the scale-space theory,we investigate the influence of the SSE on the differentiation of multi-scale features and the accuracy of recognition.It is found that augmenting the image's detail capacity does not always yield benefits for vision-based recognition models.In light of these observations,we propose a scale hybridization approach based on the diffusion mechanism of scale-space representation.The results show that scale hybridization strengthens the tolerance of multi-scale feature recognition under complex environmental noise interference and significantly enhances the recognition accuracy of GD.It also facilitates the objective understanding,description and analysis of the rock behavior and stability of slopes from the perspective of image data.
基金supported by the National Natural Science Foundation of China(62101099)the Chinese Postdoctoral Science Foundation(2021M690558,2022T150100,2018M633352,2019T120825)+3 种基金the Young Elite Scientist Sponsorship Program(YESS20200082)the Aeronautical Science Foundation of China(2022Z017080001)the Open Foundation of Science and Technology on Electronic Information Control Laboratorythe Natural Science Foundation of Sichuan Province(2023NSFSC1386)。
文摘The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.
基金This research was funded by the Ministry of Science and Technology,Taiwan(MOST 110-2410-H-006-115)the Higher Education Sprout Project,Ministry of Education to the Headquarters of University Advancement at National Cheng Kung University(NCKU)the 2021 Southeast and South Asia and Taiwan Universities Joint Research Scheme(NCKU 31),and the E-Da Hospital(EDAHC111004).
文摘Background:In recent years,there has been increased research interest in both smartphone addiction and social media addiction as well as the development of psychometric instruments to assess these constructs.However,there is a lack of psychometric evaluation for instruments assessing smartphone addiction and social media addiction in Thailand.The present study evaluated the psychometric properties and gender measurement invariance of the Thai version of the Smartphone Application-Based Addiction Scale(SABAS)and Bergen Social Media Addiction Scale(BSMAS).Method:A total of 801 Thai university students participated in an online survey from January 2022 to July 2022 which included demographic information,SABAS,BSMAS,and the Internet Gaming Disorder Scale-Short Form(IGDS9-SF).Results:Confirmatory Factor Analyses(CFAs)found that both the SABAS and BSMAS had a one-factor structure.Findings demonstrated adequate psychometric properties of both instruments and also supported measurement invariance across genders.Moreover,scores on the SABAS and BSMAS were correlated with scores on the IGDS9-SF.Conclusion:The results indicated that the SABAS and BSMAS are useful psychometric instruments for assessing the risk of smartphone addiction and social media addiction among Thai young adults.
文摘Background: Self-monitoring is important for recognizing the situations one is facing and assessing one’s own competence to respond appropriately to situations that require multitasking. Purpose: This study aimed to examine the surface and content validity of the Advanced Beginner Nurses’ Self-Monitoring Scale While Multitasking and refine the scale items accordingly. It is expected that the development of such scale will allow for reflection on advanced beginner nurses’ response to multitasking, leading to further capacity building. Methods: The surface validity of 96 items of the Advanced Beginner Nurses’ Self-Monitoring Scale While Multitasking was examined at a meeting with five expert researchers. Five researchers and five nurses examined the items’ content using an item-level content validity index through a questionnaire survey. Results and Conclusion: The Advanced Beginner Nurses’ Self-Monitoring Scale While Multitasking was organized into 73 items that were refined into scales with surface and content validity. Consequently, five sub-concepts were identified: recognizing the situation one’s facing, seeing one’s self from multiple perspectives, devising concrete strategies depending on the situation, considering a predictable time schedule, and being aware of the situation surrounding one’s self. In the future, it will be necessary to examine the reliability and validity of the scale.
文摘Nonalcoholic fatty liver disease(NAFLD)is the most common chronic liver disorder,and dietary and lifestyle interventions remain the mainstays of NAFLD therapy.Zeng et al established a prediction system to evaluate adherence to lifestyle interventions in patients with NAFLD and choose optimal management.Here,we discuss the application scenarios of the scale and the areas warranting further attention,aiming to provide a possible reference for clinical recommend-ations.
文摘The lethal dose LD<sub>50</sub> represents the most important experimental value for acute toxicity. The simple logarithmic calculation of -log<sub>10</sub> LD<sub>50</sub> = value leads to the possible poison power pLD. As with the pH or pK value, respectively, for acid or the scale of earthquake intensities the logarithm helps making large differences of orders of magnitude easier to understand since they are more comparable. The higher the pLD value, the higher is the power of poison. An increase of the pLD value by 1 stands for a tenfold increase in toxicity. The lethal acute dose for water, one of the most important and at the same time non-toxic substances of all, is about one tenth of the body weight. This leads to a possible pLD value for water of 1, an ideal starting value for a logarithmic poison scale.
文摘Modern technology for developing new items made from renewable resources is becoming more and more popular as a result of rising environmental concern.Recently,contemporary polymer composites have included the hybridization of natural fibers with synthetic ones,along with the inclusion of a variety of biowaste filler for developing sustainable goods.In this work,the kenaf/glass hybrid polyester composites are strengthened by the addition of fish scale(FS),which is taken from the fishs outermost layer of skin.Five different stacked-order laminates,such as KKKK,KGKG,GKKG,KGGK,and GGGG,are fabricated by using the hand lay-up method with four different weight concentrations of filler content:0%,5%,10%,and 15%.Mechanical possessions such as tensile,flexural,impact strength and micro-hardness have been evaluated through experimentation in accordance with ASTM standards.The experimental findings revealed that,the tensile strength and micro-hardness value of KGKG laminates with 15wt% of FS filler are found to be maximum of 118.72 MPa and 17.82 HV respectively which are 39.67%and 26.11%greater than that of KGKG laminates without FS filler.However,the flexural and impact strength of same laminates with 10 wt% FS filler exhibited a maximum value of 142.77 MPa and 62.08 kJ/m^(2).In order to corroborate its applicability for structural and building materials in open environment,the dimensional stability of the composite has been studied through moisture absorption test.The influences of FS filler loading on dimensional stability and resistance to moisture absorption capacity of laminates are also investigated.The experimental results reflected that the addition of FS-filler has significantly improved the dimensional stability of the laminates in moist environment by reducing the moisture absorption tendency.To further support the mode of failures,a fractography investigation of fractured surfaces was conducted.
文摘Small-scale farming accounts for 78% of total agricultural production in Kenya and contributes to 23.5% of the country’s GDP. Their crop production activities are mostly rainfed subsistence with any surplus being sold to bring in some income. Timely decisions on farm practices such as farm preparation and planting are critical determinants of the seasonal outcomes. In Kenya, most small-scale farmers have no reliable source of information that would help them make timely and accurate decisions. County governments have extension officers who are mandated with giving farmers advisory services to farmers but they are not able to reach most farmers due to facilitation constraints. The mode and format of sharing information is also critical since it’s important to ensure that it’s timely, well-understood and usable. This study sought to assess access to geospatial derived and other crop production information by farmers in four selected counties of Kenya. Specific objectives were to determine the profile of small-scale farmers in terms of age, education and farm size;to determine the type of information that is made available to them by County and Sub-County extension officers including the format and mode of provision;and to determine if the information provided was useful in terms of accuracy, timeliness and adequacy. The results indicated that over 80% of the farmers were over 35 years of age and over 56% were male. Majority had attained primary education (34%) or secondary education (29%) and most farmers in all the counties grew maize (71%). Notably, fellow farmers were a source of information (71%) with the frequency of sharing information being mostly seasonal (37%) and when information was available (43%). Over 66% of interviewed farmers indicating that they faced challenges while using provided information. The results from the study are insightful and helpful in determining effective ways of providing farmers with useful information to ensure maximum benefits.
文摘Cultural ancient roads,known in Chinese as gudao,serve as heritage trails that carry historical exchanges across various regions in China.Due to their extensive preservation,wide geographical distribution,diverse thematic variations,and considerable tourist appeal,these paths have emerged as representative heritage trails,increasingly transforming into a novel tourism product experience that is highly favored by tourists and recognized by government authorities.However,research on ancient roads for tourism in China currently lacks a systematic theoretical framework,as well as relevant policies,regulations,and standards to guide their practical development.Therefore,there is a pressing need to draw upon international best practices and conduct foundational research to develop an experience element system that aligns with the perceptions,behaviors,and consumption characteristics of Chinese tourists,thereby advancing theoretical exploration in this field.This study focuses on the representative Ancient Shu Road as a case study and employs a mixed-method approach that integrates qualitative and quantitative research.It aims to construct a tourist-centric scale for the experience elements of ancient road tourism while analyzing the interactive relationship between these experience elements and tourist needs.This study addresses a significant gap in the development of indicator systems for domestic studies of ancient road tourism experiences.Ultimately,the study establishes a comprehensive scale that encompasses three core categories—trail resources and environment,facilities and services,and modes of tourism activities—along with eight primary dimensions:core resources,surrounding cultural environment,surrounding natural environment,tourism reception facilities and services,infrastructure and support services,information facilities and information services,and outdoor and recreational activities.This scale consists of thirty-two specific items,providing a robust reference for future research endeavors.Additionally,the study proposes specific development strategies related to key mechanisms,spatial configuration,and facility construction to enhance the overall development of ancient road tourism.
基金The National Natural Science Foundation of China under contract Nos 42201104 and 42071123the China Postdoctoral Research Foundation under contract No.2023M730758.
文摘The long-term dynamic evolution and underlying mechanisms of coastal landscape pattern stability,driven by strong anthropogenic interference and consequently climate change,are topics of major interest in national and international scientific research.Guangdong Province,located in southeastern China,has been undergoing rapid urbanization over several decades.In this study,we quantitatively determined the scale threshold characteristics of coastal landscape pattern stability in Guangdong Province,from the dual perspective of spatial heterogeneity and spatial autocorrelation.An analysis of the spatiotemporal evolution of the coastal landscape was conducted after the optical scale was determined.Then,we applied the geodetector statistical method to quantitatively explore the mechanisms underlying coastal landscape pattern stability.Based on the inflection point of landscape metrics and the maximum value of the MoranⅠindex,the optimal scale for analyzing coastal landscape pattern stability in Guangdong Province was 240 m×240 m.Within the past several decades,coastal landscape pattern stability increased slightly and then decreased,with a turning point around 2005.The most significant variations in coastal landscape pattern stability were observed in the transition zone of rural-urban expansion.A q-statistics analysis showed that the explanatory power of paired factors was greater than that of a single driving factor;the paired factors with the greatest impact on coastal landscape pattern stability in Guangdong Province were the change in gross industrial output and change in average annual precipitation from 2010 to 2015,based on a q value of 0.604.These results will contribute to future efforts to achieve sustainable coastal development and provide a scientific basis and technical support for the rational planning and utilization of resources in large estuarine areas,including marine disaster prevention and seawall ecological restoration.