Severe water erosion is notorious for its harmful effects on land-water resources as well as local societies. The scale effects of water erosion, however, greatly exacerbate the difficulties of accurate erosion evalua...Severe water erosion is notorious for its harmful effects on land-water resources as well as local societies. The scale effects of water erosion, however, greatly exacerbate the difficulties of accurate erosion evaluation and hazard control in the real world. Analyzing the related scale issues is thus urgent for a better understanding of erosion variations as well as reducing such erosion. In this review article, water erosion dynamics across three spatial scales including plot, watershed, and regional scales were selected and discussed. For the study purposes and objectives, the advantages and disadvantages of these scales all demonstrate clear spatial-scale dependence. Plot scale studies are primarily focused on abundant data collection and mechanism discrimination of erosion generation, while watershed scale studies provide valuable information for watershed management and hazard control as well as the development of quantitatively distributed models. Regional studies concentrate more on large-scale erosion assessment, and serve policymakers and stakeholders in achieving the basis for regulatory policy for comprehensive land uses. The results of this study show that the driving forces and mechanisms of water erosion variations among the scales are quite different. As a result, several major aspects contributing to variations in water erosion across the scales are stressed: differences in the methodologies across various scales, different sink-source roles on water erosion processes, and diverse climatic zones and morphological regions. This variability becomes more complex in the context of accelerated global change. The changing climatic factors and earth surface features are considered the fourth key reason responsible for the increased variability of water erosion across spatial scales.展开更多
Intercropping, as an overyielding system, can decrease soil erosion on sloping land through the presence of dense canopy covers. However, the structure mechanism in canopy is still unclear. We conducted a two-year fie...Intercropping, as an overyielding system, can decrease soil erosion on sloping land through the presence of dense canopy covers. However, the structure mechanism in canopy is still unclear. We conducted a two-year field experiment on runoff plots, exploring whether the interaction between vegetation layers reduce soil erosion in maize and potato intercropping systems. The maize, potato, and weed layers in the intercropping system were removed by a single layer, two layers and three layers, respectively(total of 8 treatments including all layers removed as the control). Then, throughfall, runoff and sediment were measured at the plot and row scale on a weekly basis. Based on the difference between each treatment and the control, we calculated and found a relative reduction of runoff and sediment by any combination of the two vegetation layers greater than the sum of each single layer. In 2016 and 2017, the highest relative reduction of runoff reached 15.65% and 46.73%, respectively. Sediment loss decreased by 33.96% and 42.77%, respectively. Moreover, runoffand sediment reduced by the combination of all vegetation layers(no layers removed) was also larger than the sum of that by each single layer. In 2016 and 2017, the highest relative reduction of runoff reached 7.32% and 3.48%, respectively. So, there were synergistic effects among multi-level(two or three layers) vegetation layers in terms of decreasing soil erosion on sloping land. Maize redistributes more throughfall at the maize intra-specific row and the maize and potato inter-specific, which is favorable for the synergistic effect of reducing soil erosion. This finding shows an important mechanism of maize and potato intercropping for soil and water conservation, and may promote the application of diverse cropping systems for sustainable agriculture in mountainous areas.展开更多
The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of bo...The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of both regional patterns of soil loss and its impact factors in the plateau area. Based on the regional characteristics of precipitation, vegetation and land form, and with the use of Landsat TM and ground investigation data, the entire Loess Plateau was first divided into 3 380 Fundamental Assessment Units (FAUs) to adapt to this regional modeling and fast assessment. A set of easily available parameters reflecting relevant water erosion factors at a regional scale was then developed, in which dynamic and static factors were discriminated. Arclnfo GIS was used to integrate all essential data into a central database. A resulting mathematical model was established to link the sediment yields and the selected variables on the basis of FAUs through overlay in GIS and multiple regression analyses. The sensitivity analyses and validation results show that this approach works effectively in assessing large area soil erosion, and also helps to understand the regional associations of erosion and its impact factors, and thus might significantly contribute to planning and policymaking for a large area erosion control in the Loess Plateau.展开更多
Raindrop size,rainfall intensity and runoff discharge affect the detachment and transportation of soil particles.Among these three factors,the rainfall intensity seems to be more important because it can change other ...Raindrop size,rainfall intensity and runoff discharge affect the detachment and transportation of soil particles.Among these three factors,the rainfall intensity seems to be more important because it can change other two factors.Storm patterns can be determined by changing the rainfall intensity during the storm.Therefore,the objective of this research is to test the influence of storm pattern on runoff,soil erosion and sediment concentration on a rangeland soil slope under field rainfall simulation.Four storm rainfall intensity patterns were selected for examining the effects of variations in storm event characteristics on soil erosion processes.The selected storm patterns were:I(45,55 and 70 mm h-1);II(45,70 and 55 mm h-1);III:(70,55 and 45 mm h-1);and IV(55,45 and 70 mm h1).The last pattern is a new one instead of the uniform pattern which has been sufficiently studied in previous researches.The experiments were conducted in field plots(in Kojour watershed,Mazandaran Province,Iran)with an area of one square meter and an constant slope gradient of 18%,surrounded by galvanised sheets.Following the nonuniform prioritization of the storm patterns for the studied variables,time to runoff(I>II>IV>III),runoff volume(III>IV>II>I),sediment concentration(IV>III>I>II)and soil erosion(III>IV>II>I)),it can be generally inferred that each pattern has specific effect on soil erosion processes during a storm.The results of the general linear model(GLM)test indicated that the effects of storm pattern on time to runoff,total runoff volume,runoff coefficient and soil erosion were significant at a level of 99%.The Duncan test showed that the storm patterns can be divided into three groups of III,IV;II;I(for time to runoff),I,II;IV,III(for runoff coefficient),and I;II;IV,III(for runoff volume and soil erosion).展开更多
In recent years, research on spatial scale and scale transformation of eroded sediment transport has become a forefront field in current soil erosion research, but there are very few studies on the scale effect proble...In recent years, research on spatial scale and scale transformation of eroded sediment transport has become a forefront field in current soil erosion research, but there are very few studies on the scale effect problem in Karst regions of China. Here we quantitatively extracted five main factors influencing soil erosion, namely rainfall erosivity, soil erodibility, vegetative cover and management, soil and water conservation, and slope length and steepness. Regression relations were built between these factors and also the sediment transport modulus and drainage area, so as to initially analyze and discuss scale effects on sediment transport in the Wujiang River Basin(WRB). The size and extent of soil erosion influencing factors in the WRB were gauged from: Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM), precipitation data, land use, soil type and Normalized Difference Vegetation Index(NDVI) data from Global Inventory Modeling and Mapping Studies(GIMMS) or Advanced Very High Resolution Radiometer(AVHRR), and observed data from hydrometric stations. We find that scaling effects exist between the sediment transport modulus and the drainage area. Scaling effects are expressed after logarithmic transformation by a quadratic function regression relationship where the sediment transport modulus increases before decreasing, alongside changes in the drainage area. Among the five factors influencing soil erosion, slope length and steepness increases first and then decreases, alongside changes in the drainage area, and are the main factors determining the relationship between sediment transport modulus and drainage area. To eliminate the influence of scale effects on our results, we mapped the sediment yield modulus of the entire WRB, adopting a 1 000 km^2 standard area with a smaller fitting error for all sub-basins, and using the common Kriging interpolation method.展开更多
Scale effects exist in the whole process of rainfall-3-runoff-3-soil erosion-3-sediment transport in river basins. The differences of hydrographs and sediment graphs in different positions in a river basin are treated...Scale effects exist in the whole process of rainfall-3-runoff-3-soil erosion-3-sediment transport in river basins. The differences of hydrographs and sediment graphs in different positions in a river basin are treated as basic scale effects, which are more complex in the gullied Loess Plateau, a region notorious for high intensity soil erosion and hyper-concentrated sediment-laden flow. The up-scaling method of direct extrapolation that maintains dynamical mechanism effective in large scale application was chosen as the methodology of this paper. Firstly, scale effects of hydrographs and sediment graphs were analyzed by using field data, and key sub-processes and their mechanisms contributing to scale effects were clearly defined. Then, the Digital Yellow River Model that integrates sub-models for the subprocesses was used with high resolution to simulate rainfall-3-runoff-3-soil erosion-3-sediment transport response in Chabagou watershed, and the distributed results representing scale effects were obtained. Finally, analysis on the simulation results was carried out. It was shown that gravitational erosion and hyper-concentrated flow contribute most to the spatial variation of hydrographs and sediment graphs in the spatial scale. Different spatial scale distributions and superposition of different sub-processes are the mechanisms of scale effects.展开更多
Based on the observation data of rainfall,vegetation,runoff and sediment yield in the experimental plots located in Hetian Town,Changting County of Fujian Province during 2007-2010,the changing characteristics and int...Based on the observation data of rainfall,vegetation,runoff and sediment yield in the experimental plots located in Hetian Town,Changting County of Fujian Province during 2007-2010,the changing characteristics and interrelation of live vegetation volume of grass,rainfall parameters,and water(soil)conservation effect RE(SE)were analyzed at four time scales of rainfall event,month,season,and year.The results showed that with the increase of time scales,the rainfall and vegetation indicators increased or decreased more or less,and the variation range of RE was small,while SEslowly decreased.The mean REchanged by 10%-20% at different time scales,and the observed water conservation effect of the grassland was the best at season scale while the worst at year scale.The soil conservation effect of the grassland was the best at month scale and the worst at season scale.The water conservation effect of the grass was mainly controlled by rainfall factors,including rainfall duration and precipitation at rainfall event scale,and the maximum intensity of precipitation within 30 min at longer time scales.However,the soil conservation effect of the grass was mainly controlled by vegetation factors,including the contribution of the litter on soil surface at rainfall event scale,the interaction of rainfall and vegetation at month and season scales,and the live vegetation volume of the grass at year scale.Consequently,at different time scales,the factors influencing water and soil conservation changed and interacted,and the observed water and soil conservation effects were also different,indicating that the influence of time scales deserves attention in both research and management practices.展开更多
Based on data from 148 hydrometric stations in the Yellow River Basin, an analysis of regional scale relationship, or the relationship between specific sediment yield and drainage basin area, has been undertaken in th...Based on data from 148 hydrometric stations in the Yellow River Basin, an analysis of regional scale relationship, or the relationship between specific sediment yield and drainage basin area, has been undertaken in the study area of the Loess Plateau. For different regions, scale relationship in log-log ordinate can be fitted by two types of lines: straight and parabola, and for each line, a function was fitted using regression analysis. The different scale relationships have been explained in terms of the difference in surface material distribution and landforms. To offset the scale-induced influence, calcu-lation has been done based on the fitted functions, in order to adjust the data of specific sediment yield to a common standard area. Based on the scaled data, a map of specific sediment yield was con-structed using Kriging interpolation. For comparison, a map based on the un-scaled data of specific sediment yield was also constructed using the same method. The two maps show that the basic pattern of specific sediment yield was basically the same. The severely eroded areas (Ys >10000 t km-2a-1) were at the same locations from Hekouzhen to Longmen in the middle Yellow River Basin. However, after the adjustment to a common standard area, the very severely eroded area (Ys >20000 t km-2a-1) became much enlarged because after the adjustment, all the values of Ys in the lower river basin in those regions became much larger than before.展开更多
In this study,two adjacent gauged catchments on the Chinese Loess Plateau were selected,in which one catchment was afforested and one was restored with natural vegetation in 1954.The distributions of soil erosion rate...In this study,two adjacent gauged catchments on the Chinese Loess Plateau were selected,in which one catchment was afforested and one was restored with natural vegetation in 1954.The distributions of soil erosion rates were estimated between 2010 and 2020 with a high spatial resolution of 2 m in the paired catchments based on the Revised Universal Soil Loss Equation model(RUSLE)and Geographic Information Systems(GIS).The results showed that the simulated soil erosion rates in 2010-2020 averaged 12.58 and 8.56 t ha^(-1)a^(-1)for the grassland and forestland catchment,respectively.Moreover,areas with high soil erosion rates(>80t ha^(-1)a^(-1))were mainly distributed in the topography with steep slope gradients(>45°).Comparisons between simulated soil erosion rates and observed annual sediment loads indicated that the simulation results of the grassland catchment were lower than the observed values,while it was reversed in the forestland catchment.We conclude that the RUSLE model cannot simulate the gravity erosion induced by extreme rainfall events.For the forestland catchment,insufficient streamflow and dense vegetation coverage are crucial factors resulting in hindering the movement of sediments.展开更多
The application of fallout radionuclides in soil erosion investigations and related sediment budget studies has provided a widely used tool for improving understanding of soil erosion and sediment transfer processes.H...The application of fallout radionuclides in soil erosion investigations and related sediment budget studies has provided a widely used tool for improving understanding of soil erosion and sediment transfer processes.However,most studies using fallout radionuclides undertaken to date have focussed on small areas.This focus on small areas reflects both the issues addressed and practical constraints associated with sample collection and analysis.Increasing acceptance of the important role of fine sediment in degrading aquatic habitats and in the transfer and fate of nutrients and contaminants within terrestrial and fluvial systems has emphasised the need to consider larger areas and the catchment or regional scale.The need to upscale existing approaches to the use of fallout radionuclides to larger areas represents an important challenge.This contribution provides a brief review of existing and potential approaches to upscaling the use of fallout radionuclides and presents two examples where such approaches have been successfully applied.These involve a national scale assessment of soil erosion rates in England and Wales based on 137Cs measurements and an investigation of the sediment budgets of three small/intermediate-size catchments in southern Italy.展开更多
Assessing the effects of vegetation on water and soil conversation is the key basis for research and management of ecological restoration on water-eroded areas.In this study,the runoff depth,soil loss and correspondin...Assessing the effects of vegetation on water and soil conversation is the key basis for research and management of ecological restoration on water-eroded areas.In this study,the runoff depth,soil loss and corresponding precipitation of five plots planted respectively with Pueraria lobata,Lespedeza bicolor Turcz,Manglietia yuyuanensis Law,Paspalum natatu Fliigge,Paspalum wettsteinii Hackel and one control plot were observed monthly from 2003 to 2010 in Hetian Town of Changting County,Fujian Province,a typical water-eroded area in southern China.Then the effects of different vegetation on water/soil conversation(RE/SE)were determined using the ratios of runoff depth/soil loss between vegetated plots to the control plot.Meanwhile,the effect of precipitation on the water and soil loss was also analyzed.The results showed that,both the water and soil conservation effects of Pueraria lobata and Manglietia yuyuanensis Law are better than Lespedeza bicolor Turcz and Paspalum natatu,while Paspalum wettsteinii Hackel are the worst.The differences of effects of water conservation are more significantly than those of soil conversation between five kinds of vegetations.The runoff depth is mainly affected by precipitation,the determination coefficients(R2)of linear regression models between precipitation and runoff depth of all planted plots are all greater than 0.9,whereas the determination coefficients of the linear regression models between precipitation and soil loss vary form 0.3 to 0.8 for different vegetated plots.These results provide a reference for vegetation reconstruction in the current and similar areas.展开更多
The computation of the design load on culverts in the current Chinese General Code for Design of Highway Bridges and Culverts (CGCDHBC)is primarily based on the linear earth pressure theory, which cannot accurately ...The computation of the design load on culverts in the current Chinese General Code for Design of Highway Bridges and Culverts (CGCDHBC)is primarily based on the linear earth pressure theory, which cannot accurately reflect the changes in vertical loads on trench installation culverts. So the changes in vertical earth pressure and soil arching effect in the backfill for an unsymmetrical trench installation culvert are studied based on a full scale experiment and finite element (FE) simulation. The variation laws of foundation pressure and settlement are also analyzed. Meanwhile, the influence of eccentric load induced by an unsymmetrical trench installation on the interaction of a soil- structure system is discussed. Results show that soil arch is formed when the backfill on the culvert reaches a certain height. It can relieve the earth pressure concentration on the crest of the culvert, but it is instable. The earth pressures obtained by full scale experiment and numerical simulation are greater than those calculated by the current CGCDHBC method. The eccentric load effect on the culvert has a significant influence on the stress states and deformation of the soil-structure system.展开更多
Realistic hydrological response is sensitive to the spatial variability of landscape properties. For a grid-based distributed rainfall-runoff model with a hypothesis of a uniform grid, the high-frequency information w...Realistic hydrological response is sensitive to the spatial variability of landscape properties. For a grid-based distributed rainfall-runoff model with a hypothesis of a uniform grid, the high-frequency information within a grid cell will be gradually lost as the resolution of the digital elevation model(DEM) grows coarser. Therefore, the performance of a hydrological model is usually scale-dependent. This study used the GridXinanjiang(GXAJ) model as an example to investigate the effects of subgrid variability on hydrological response at different scales. With the aim of producing a more reasonable hydrological response and spatial description of the landscape properties, a new distributed rainfall-runoff model integrating the subgrid variability(the GXAJSV model) was developed. In this model, the topographic index is used as an auxiliary variable correlated with the soil storage capacity. The incomplete beta distribution is suggested for simulating the probability distribution of the soil storage capacity within the raster grid. The Yaogu Basin in China was selected for model calibration and validation at different spatial scales.Results demonstrated that the proposed model can effectively eliminate the scale dependence of the GXAJ model and produce a more reasonable hydrological response.展开更多
There is a consensus that sediment delivery ratio in the Chinese Loess Plateau is close to 1at the inter-annual timescale. However, little information is available about the sediment delivery at finer timescales. We e...There is a consensus that sediment delivery ratio in the Chinese Loess Plateau is close to 1at the inter-annual timescale. However, little information is available about the sediment delivery at finer timescales. We evaluated the sediment delivery from plots to watersheds at the event or intra-annual, annual, and inter-annual timescales within the Wudinghe river basin, a 30,261 km2 basin in the Loess Plateau. We calculated the ratio of sediment output to sediment input and presented the temporal change of the channel morphology to determine whether sediment deposition occurs.Although a single flood event frequently has a sediment yield exceeding 10,000 t km-2, sediment deposition rarely occurs except during some small runoff events(sediment yield < 5000 t km-2) or dry years(sediment yield < 10,000 t km-2) when moving from slopes up to the main channels of the Wudinghe River. This observation suggests a sediment delivery ratio close to 1 even at the event or intra-annual and the annual timescales, but not necessarily at the interannual timescale. Such a high sediment delivery ratio can be related to hyper-concentrated flows, which have very strong sediment transport capacity even at low flow strength. Because hyper-concentrated flows are well-developed in the whole Loess Plateau, a sediment delivery ratio close to 1 below the interannual timescale possibly remains true for other rivers in the Loess Plateau.展开更多
A tropical smallholder cash crop farming system in a semi-arid Inter-Andean valley of Ecuador was investigated. Intensive irrigated agriculture with up to 400 kg of urea-N fertilization ha-1·a-1 prevails in collu...A tropical smallholder cash crop farming system in a semi-arid Inter-Andean valley of Ecuador was investigated. Intensive irrigated agriculture with up to 400 kg of urea-N fertilization ha-1·a-1 prevails in colluvial sites whereas urea application in the steep eroded sites is lower. Farmers did recently introduce manure to partly replace urea fertilization. Knowledge about the effects of mineral and organic fertilizers on nitrogen and carbon cycling needs to be improved to maintain sustainable agriculture in the research area. Therefore, a laboratory incubation experiment was conducted to investigate effects of urea and guinea pig manure on microbial activity of col-luvial foot slope and eroded upper slope soils. Soil samples were treated with 200 kg·N·ha-1 either applied as urea, guinea pig manure or a combination of both and compared to a control. Urea fertilizer was labeled with 15N to trace its fate. Microbial biomass and basal respiration were determined in different time intervals. Urea fertilization induced an acceleration of soil organic matter (SOM) mineralization (positive priming effect) in the first seven days of incubation. The combined fertilization served as a positive alternative to the present urea management since it increased the amount of microbial biomass and provided mineral nitrogen for immediate plant uptake. Moreover, low recovery rates suggested an immobilization of fertilized nitrogen into the microbial biomass inducing an efficient and sustained nutrient release throughout the entire growing season. SOM stocks in colluvial soils were 40% below those of eroded soils which was partly due to the positive priming effect after urea fertilization. Microbial activity and efficiency were not reduced by soil erosion.展开更多
The negative effect of soil erosion and soil compaction is well documented for the purpose of optimum rangeland functioning, while the impact of rangeland degradation on effective soil depth is seldom quantified. The ...The negative effect of soil erosion and soil compaction is well documented for the purpose of optimum rangeland functioning, while the impact of rangeland degradation on effective soil depth is seldom quantified. The aim of this study was to quantify the response of vegetation cover and soil properties, particularly effective soil depth and soil texture to rangeland degradation. Forty-one farms were sampled in the arid and semi-arid climate of South Africa. Within these farms, data was collected over a vegetation degradation gradient. Results showed a significant decline in relative basal cover (94% ± 15% to 39% ± 17%) and soil depth (90% ± 14% to 73% ± 24%) as rangeland degraded. Soil texture changes over the degradation gradients vary for different homogeneous vegetation types. Indications regarding the loss of a functioning rangeland ecosystem were also demonstrated, using objective long-term relations between rangeland conditions and grazing capacity. The study highlights the importance of sustainable rangeland management practices to reduce the loss in effective soil depth and to ensure the sustainable utilization of the rangeland ecosystem. These results can probably extrapolate to other arid and semi-arid rangelands worldwide.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40925003, 40930528, 40801041)
文摘Severe water erosion is notorious for its harmful effects on land-water resources as well as local societies. The scale effects of water erosion, however, greatly exacerbate the difficulties of accurate erosion evaluation and hazard control in the real world. Analyzing the related scale issues is thus urgent for a better understanding of erosion variations as well as reducing such erosion. In this review article, water erosion dynamics across three spatial scales including plot, watershed, and regional scales were selected and discussed. For the study purposes and objectives, the advantages and disadvantages of these scales all demonstrate clear spatial-scale dependence. Plot scale studies are primarily focused on abundant data collection and mechanism discrimination of erosion generation, while watershed scale studies provide valuable information for watershed management and hazard control as well as the development of quantitatively distributed models. Regional studies concentrate more on large-scale erosion assessment, and serve policymakers and stakeholders in achieving the basis for regulatory policy for comprehensive land uses. The results of this study show that the driving forces and mechanisms of water erosion variations among the scales are quite different. As a result, several major aspects contributing to variations in water erosion across the scales are stressed: differences in the methodologies across various scales, different sink-source roles on water erosion processes, and diverse climatic zones and morphological regions. This variability becomes more complex in the context of accelerated global change. The changing climatic factors and earth surface features are considered the fourth key reason responsible for the increased variability of water erosion across spatial scales.
基金financially supported by the Special Fund for Agro-scientific Research in the Public Interest of China(Grant No.201503119)the National Key Technologies R&D Program of China(Grant No.2015BAD06B04)the Scholarship Award for Excellent Doctoral Student granted by Yunnan Province
文摘Intercropping, as an overyielding system, can decrease soil erosion on sloping land through the presence of dense canopy covers. However, the structure mechanism in canopy is still unclear. We conducted a two-year field experiment on runoff plots, exploring whether the interaction between vegetation layers reduce soil erosion in maize and potato intercropping systems. The maize, potato, and weed layers in the intercropping system were removed by a single layer, two layers and three layers, respectively(total of 8 treatments including all layers removed as the control). Then, throughfall, runoff and sediment were measured at the plot and row scale on a weekly basis. Based on the difference between each treatment and the control, we calculated and found a relative reduction of runoff and sediment by any combination of the two vegetation layers greater than the sum of each single layer. In 2016 and 2017, the highest relative reduction of runoff reached 15.65% and 46.73%, respectively. Sediment loss decreased by 33.96% and 42.77%, respectively. Moreover, runoffand sediment reduced by the combination of all vegetation layers(no layers removed) was also larger than the sum of that by each single layer. In 2016 and 2017, the highest relative reduction of runoff reached 7.32% and 3.48%, respectively. So, there were synergistic effects among multi-level(two or three layers) vegetation layers in terms of decreasing soil erosion on sloping land. Maize redistributes more throughfall at the maize intra-specific row and the maize and potato inter-specific, which is favorable for the synergistic effect of reducing soil erosion. This finding shows an important mechanism of maize and potato intercropping for soil and water conservation, and may promote the application of diverse cropping systems for sustainable agriculture in mountainous areas.
基金Under the auspices of Northeast Normal University Sci-tech Innovation Incubation Program(No.NENU-STC08017)European Commission FP7 Project―PRACTICE(No.ENVI-2008-226818)
文摘The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of both regional patterns of soil loss and its impact factors in the plateau area. Based on the regional characteristics of precipitation, vegetation and land form, and with the use of Landsat TM and ground investigation data, the entire Loess Plateau was first divided into 3 380 Fundamental Assessment Units (FAUs) to adapt to this regional modeling and fast assessment. A set of easily available parameters reflecting relevant water erosion factors at a regional scale was then developed, in which dynamic and static factors were discriminated. Arclnfo GIS was used to integrate all essential data into a central database. A resulting mathematical model was established to link the sediment yields and the selected variables on the basis of FAUs through overlay in GIS and multiple regression analyses. The sensitivity analyses and validation results show that this approach works effectively in assessing large area soil erosion, and also helps to understand the regional associations of erosion and its impact factors, and thus might significantly contribute to planning and policymaking for a large area erosion control in the Loess Plateau.
文摘Raindrop size,rainfall intensity and runoff discharge affect the detachment and transportation of soil particles.Among these three factors,the rainfall intensity seems to be more important because it can change other two factors.Storm patterns can be determined by changing the rainfall intensity during the storm.Therefore,the objective of this research is to test the influence of storm pattern on runoff,soil erosion and sediment concentration on a rangeland soil slope under field rainfall simulation.Four storm rainfall intensity patterns were selected for examining the effects of variations in storm event characteristics on soil erosion processes.The selected storm patterns were:I(45,55 and 70 mm h-1);II(45,70 and 55 mm h-1);III:(70,55 and 45 mm h-1);and IV(55,45 and 70 mm h1).The last pattern is a new one instead of the uniform pattern which has been sufficiently studied in previous researches.The experiments were conducted in field plots(in Kojour watershed,Mazandaran Province,Iran)with an area of one square meter and an constant slope gradient of 18%,surrounded by galvanised sheets.Following the nonuniform prioritization of the storm patterns for the studied variables,time to runoff(I>II>IV>III),runoff volume(III>IV>II>I),sediment concentration(IV>III>I>II)and soil erosion(III>IV>II>I)),it can be generally inferred that each pattern has specific effect on soil erosion processes during a storm.The results of the general linear model(GLM)test indicated that the effects of storm pattern on time to runoff,total runoff volume,runoff coefficient and soil erosion were significant at a level of 99%.The Duncan test showed that the storm patterns can be divided into three groups of III,IV;II;I(for time to runoff),I,II;IV,III(for runoff coefficient),and I;II;IV,III(for runoff volume and soil erosion).
基金generously supported by Project of National Natural Science Foundation of China (41641011)National Geology and Mineral Resources Survey and Assessment Program (DDT0160087)
文摘In recent years, research on spatial scale and scale transformation of eroded sediment transport has become a forefront field in current soil erosion research, but there are very few studies on the scale effect problem in Karst regions of China. Here we quantitatively extracted five main factors influencing soil erosion, namely rainfall erosivity, soil erodibility, vegetative cover and management, soil and water conservation, and slope length and steepness. Regression relations were built between these factors and also the sediment transport modulus and drainage area, so as to initially analyze and discuss scale effects on sediment transport in the Wujiang River Basin(WRB). The size and extent of soil erosion influencing factors in the WRB were gauged from: Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM), precipitation data, land use, soil type and Normalized Difference Vegetation Index(NDVI) data from Global Inventory Modeling and Mapping Studies(GIMMS) or Advanced Very High Resolution Radiometer(AVHRR), and observed data from hydrometric stations. We find that scaling effects exist between the sediment transport modulus and the drainage area. Scaling effects are expressed after logarithmic transformation by a quadratic function regression relationship where the sediment transport modulus increases before decreasing, alongside changes in the drainage area. Among the five factors influencing soil erosion, slope length and steepness increases first and then decreases, alongside changes in the drainage area, and are the main factors determining the relationship between sediment transport modulus and drainage area. To eliminate the influence of scale effects on our results, we mapped the sediment yield modulus of the entire WRB, adopting a 1 000 km^2 standard area with a smaller fitting error for all sub-basins, and using the common Kriging interpolation method.
基金Supported by the National Basic Research Program of China ("973") (Grant No. 2007CB714100)the National Natural Science Foundation of China (Grant Nos. 50849003, 50809028)China Postdoctoral Science Foundation (Grant No. 20080440392)
文摘Scale effects exist in the whole process of rainfall-3-runoff-3-soil erosion-3-sediment transport in river basins. The differences of hydrographs and sediment graphs in different positions in a river basin are treated as basic scale effects, which are more complex in the gullied Loess Plateau, a region notorious for high intensity soil erosion and hyper-concentrated sediment-laden flow. The up-scaling method of direct extrapolation that maintains dynamical mechanism effective in large scale application was chosen as the methodology of this paper. Firstly, scale effects of hydrographs and sediment graphs were analyzed by using field data, and key sub-processes and their mechanisms contributing to scale effects were clearly defined. Then, the Digital Yellow River Model that integrates sub-models for the subprocesses was used with high resolution to simulate rainfall-3-runoff-3-soil erosion-3-sediment transport response in Chabagou watershed, and the distributed results representing scale effects were obtained. Finally, analysis on the simulation results was carried out. It was shown that gravitational erosion and hyper-concentrated flow contribute most to the spatial variation of hydrographs and sediment graphs in the spatial scale. Different spatial scale distributions and superposition of different sub-processes are the mechanisms of scale effects.
基金Supported by the National Natural Science Foundation of China(41571415,41071281)Natural Science Foundation of Jiangsu Province(BK20131078)Planning Project for Cultivation of Young Academic Leaders in"Qinglan Project"of Education Department of Jiangsu Province
文摘Based on the observation data of rainfall,vegetation,runoff and sediment yield in the experimental plots located in Hetian Town,Changting County of Fujian Province during 2007-2010,the changing characteristics and interrelation of live vegetation volume of grass,rainfall parameters,and water(soil)conservation effect RE(SE)were analyzed at four time scales of rainfall event,month,season,and year.The results showed that with the increase of time scales,the rainfall and vegetation indicators increased or decreased more or less,and the variation range of RE was small,while SEslowly decreased.The mean REchanged by 10%-20% at different time scales,and the observed water conservation effect of the grassland was the best at season scale while the worst at year scale.The soil conservation effect of the grassland was the best at month scale and the worst at season scale.The water conservation effect of the grass was mainly controlled by rainfall factors,including rainfall duration and precipitation at rainfall event scale,and the maximum intensity of precipitation within 30 min at longer time scales.However,the soil conservation effect of the grass was mainly controlled by vegetation factors,including the contribution of the litter on soil surface at rainfall event scale,the interaction of rainfall and vegetation at month and season scales,and the live vegetation volume of the grass at year scale.Consequently,at different time scales,the factors influencing water and soil conservation changed and interacted,and the observed water and soil conservation effects were also different,indicating that the influence of time scales deserves attention in both research and management practices.
基金Supported by the National Natural Science Foundation of China and the Yellow River Water Conservancy Commission (Grant Nos. 50239080 and 40271019)
文摘Based on data from 148 hydrometric stations in the Yellow River Basin, an analysis of regional scale relationship, or the relationship between specific sediment yield and drainage basin area, has been undertaken in the study area of the Loess Plateau. For different regions, scale relationship in log-log ordinate can be fitted by two types of lines: straight and parabola, and for each line, a function was fitted using regression analysis. The different scale relationships have been explained in terms of the difference in surface material distribution and landforms. To offset the scale-induced influence, calcu-lation has been done based on the fitted functions, in order to adjust the data of specific sediment yield to a common standard area. Based on the scaled data, a map of specific sediment yield was con-structed using Kriging interpolation. For comparison, a map based on the un-scaled data of specific sediment yield was also constructed using the same method. The two maps show that the basic pattern of specific sediment yield was basically the same. The severely eroded areas (Ys >10000 t km-2a-1) were at the same locations from Hekouzhen to Longmen in the middle Yellow River Basin. However, after the adjustment to a common standard area, the very severely eroded area (Ys >20000 t km-2a-1) became much enlarged because after the adjustment, all the values of Ys in the lower river basin in those regions became much larger than before.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB40000000)the National Natural Science Foundation of China(Grant No.41790444)。
文摘In this study,two adjacent gauged catchments on the Chinese Loess Plateau were selected,in which one catchment was afforested and one was restored with natural vegetation in 1954.The distributions of soil erosion rates were estimated between 2010 and 2020 with a high spatial resolution of 2 m in the paired catchments based on the Revised Universal Soil Loss Equation model(RUSLE)and Geographic Information Systems(GIS).The results showed that the simulated soil erosion rates in 2010-2020 averaged 12.58 and 8.56 t ha^(-1)a^(-1)for the grassland and forestland catchment,respectively.Moreover,areas with high soil erosion rates(>80t ha^(-1)a^(-1))were mainly distributed in the topography with steep slope gradients(>45°).Comparisons between simulated soil erosion rates and observed annual sediment loads indicated that the simulation results of the grassland catchment were lower than the observed values,while it was reversed in the forestland catchment.We conclude that the RUSLE model cannot simulate the gravity erosion induced by extreme rainfall events.For the forestland catchment,insufficient streamflow and dense vegetation coverage are crucial factors resulting in hindering the movement of sediments.
基金support of the International Atomic Energy Agency Coordinated Research Programme D1.20.11,and associated Technical Contract 15478 for the work reported in this contribution is gratefully acknowledgedThe work on the UK National Soil Erosion Inventory was funded by DEFRA contracts SP0411 and SP0413.
文摘The application of fallout radionuclides in soil erosion investigations and related sediment budget studies has provided a widely used tool for improving understanding of soil erosion and sediment transfer processes.However,most studies using fallout radionuclides undertaken to date have focussed on small areas.This focus on small areas reflects both the issues addressed and practical constraints associated with sample collection and analysis.Increasing acceptance of the important role of fine sediment in degrading aquatic habitats and in the transfer and fate of nutrients and contaminants within terrestrial and fluvial systems has emphasised the need to consider larger areas and the catchment or regional scale.The need to upscale existing approaches to the use of fallout radionuclides to larger areas represents an important challenge.This contribution provides a brief review of existing and potential approaches to upscaling the use of fallout radionuclides and presents two examples where such approaches have been successfully applied.These involve a national scale assessment of soil erosion rates in England and Wales based on 137Cs measurements and an investigation of the sediment budgets of three small/intermediate-size catchments in southern Italy.
基金Supported by National Natural Science Foundation of China(41071281)
文摘Assessing the effects of vegetation on water and soil conversation is the key basis for research and management of ecological restoration on water-eroded areas.In this study,the runoff depth,soil loss and corresponding precipitation of five plots planted respectively with Pueraria lobata,Lespedeza bicolor Turcz,Manglietia yuyuanensis Law,Paspalum natatu Fliigge,Paspalum wettsteinii Hackel and one control plot were observed monthly from 2003 to 2010 in Hetian Town of Changting County,Fujian Province,a typical water-eroded area in southern China.Then the effects of different vegetation on water/soil conversation(RE/SE)were determined using the ratios of runoff depth/soil loss between vegetated plots to the control plot.Meanwhile,the effect of precipitation on the water and soil loss was also analyzed.The results showed that,both the water and soil conservation effects of Pueraria lobata and Manglietia yuyuanensis Law are better than Lespedeza bicolor Turcz and Paspalum natatu,while Paspalum wettsteinii Hackel are the worst.The differences of effects of water conservation are more significantly than those of soil conversation between five kinds of vegetations.The runoff depth is mainly affected by precipitation,the determination coefficients(R2)of linear regression models between precipitation and runoff depth of all planted plots are all greater than 0.9,whereas the determination coefficients of the linear regression models between precipitation and soil loss vary form 0.3 to 0.8 for different vegetated plots.These results provide a reference for vegetation reconstruction in the current and similar areas.
基金Key Plan of Science and Technology of Hubei Provincial Communication Department(No.2005-361)
文摘The computation of the design load on culverts in the current Chinese General Code for Design of Highway Bridges and Culverts (CGCDHBC)is primarily based on the linear earth pressure theory, which cannot accurately reflect the changes in vertical loads on trench installation culverts. So the changes in vertical earth pressure and soil arching effect in the backfill for an unsymmetrical trench installation culvert are studied based on a full scale experiment and finite element (FE) simulation. The variation laws of foundation pressure and settlement are also analyzed. Meanwhile, the influence of eccentric load induced by an unsymmetrical trench installation on the interaction of a soil- structure system is discussed. Results show that soil arch is formed when the backfill on the culvert reaches a certain height. It can relieve the earth pressure concentration on the crest of the culvert, but it is instable. The earth pressures obtained by full scale experiment and numerical simulation are greater than those calculated by the current CGCDHBC method. The eccentric load effect on the culvert has a significant influence on the stress states and deformation of the soil-structure system.
基金supported by the Graduate Students Scientific Research Innovation Plan of Jiangsu Province(Grant No.CXZZ12_0243)the China Scholarship Council(Grant No.201306710013)+1 种基金the State Major Project of Water Pollution Control and Management(Grant No.2014ZX07101-011)the Special Fund for Public Welfare of Ministry of Water Resources of China(Grant No.201501007)
文摘Realistic hydrological response is sensitive to the spatial variability of landscape properties. For a grid-based distributed rainfall-runoff model with a hypothesis of a uniform grid, the high-frequency information within a grid cell will be gradually lost as the resolution of the digital elevation model(DEM) grows coarser. Therefore, the performance of a hydrological model is usually scale-dependent. This study used the GridXinanjiang(GXAJ) model as an example to investigate the effects of subgrid variability on hydrological response at different scales. With the aim of producing a more reasonable hydrological response and spatial description of the landscape properties, a new distributed rainfall-runoff model integrating the subgrid variability(the GXAJSV model) was developed. In this model, the topographic index is used as an auxiliary variable correlated with the soil storage capacity. The incomplete beta distribution is suggested for simulating the probability distribution of the soil storage capacity within the raster grid. The Yaogu Basin in China was selected for model calibration and validation at different spatial scales.Results demonstrated that the proposed model can effectively eliminate the scale dependence of the GXAJ model and produce a more reasonable hydrological response.
基金funded by National Natural Science Foundation of China (Grant Nos. 41230746, 41271306)the National Key Technology Research and Development Program (Grant No. 2012BAC09B03)the Open-fund Project of Jiangxi Provincial Key Laboratory of Soil Erosion and Prevention (Grant No. JXSB201301)
文摘There is a consensus that sediment delivery ratio in the Chinese Loess Plateau is close to 1at the inter-annual timescale. However, little information is available about the sediment delivery at finer timescales. We evaluated the sediment delivery from plots to watersheds at the event or intra-annual, annual, and inter-annual timescales within the Wudinghe river basin, a 30,261 km2 basin in the Loess Plateau. We calculated the ratio of sediment output to sediment input and presented the temporal change of the channel morphology to determine whether sediment deposition occurs.Although a single flood event frequently has a sediment yield exceeding 10,000 t km-2, sediment deposition rarely occurs except during some small runoff events(sediment yield < 5000 t km-2) or dry years(sediment yield < 10,000 t km-2) when moving from slopes up to the main channels of the Wudinghe River. This observation suggests a sediment delivery ratio close to 1 even at the event or intra-annual and the annual timescales, but not necessarily at the interannual timescale. Such a high sediment delivery ratio can be related to hyper-concentrated flows, which have very strong sediment transport capacity even at low flow strength. Because hyper-concentrated flows are well-developed in the whole Loess Plateau, a sediment delivery ratio close to 1 below the interannual timescale possibly remains true for other rivers in the Loess Plateau.
文摘A tropical smallholder cash crop farming system in a semi-arid Inter-Andean valley of Ecuador was investigated. Intensive irrigated agriculture with up to 400 kg of urea-N fertilization ha-1·a-1 prevails in colluvial sites whereas urea application in the steep eroded sites is lower. Farmers did recently introduce manure to partly replace urea fertilization. Knowledge about the effects of mineral and organic fertilizers on nitrogen and carbon cycling needs to be improved to maintain sustainable agriculture in the research area. Therefore, a laboratory incubation experiment was conducted to investigate effects of urea and guinea pig manure on microbial activity of col-luvial foot slope and eroded upper slope soils. Soil samples were treated with 200 kg·N·ha-1 either applied as urea, guinea pig manure or a combination of both and compared to a control. Urea fertilizer was labeled with 15N to trace its fate. Microbial biomass and basal respiration were determined in different time intervals. Urea fertilization induced an acceleration of soil organic matter (SOM) mineralization (positive priming effect) in the first seven days of incubation. The combined fertilization served as a positive alternative to the present urea management since it increased the amount of microbial biomass and provided mineral nitrogen for immediate plant uptake. Moreover, low recovery rates suggested an immobilization of fertilized nitrogen into the microbial biomass inducing an efficient and sustained nutrient release throughout the entire growing season. SOM stocks in colluvial soils were 40% below those of eroded soils which was partly due to the positive priming effect after urea fertilization. Microbial activity and efficiency were not reduced by soil erosion.
文摘The negative effect of soil erosion and soil compaction is well documented for the purpose of optimum rangeland functioning, while the impact of rangeland degradation on effective soil depth is seldom quantified. The aim of this study was to quantify the response of vegetation cover and soil properties, particularly effective soil depth and soil texture to rangeland degradation. Forty-one farms were sampled in the arid and semi-arid climate of South Africa. Within these farms, data was collected over a vegetation degradation gradient. Results showed a significant decline in relative basal cover (94% ± 15% to 39% ± 17%) and soil depth (90% ± 14% to 73% ± 24%) as rangeland degraded. Soil texture changes over the degradation gradients vary for different homogeneous vegetation types. Indications regarding the loss of a functioning rangeland ecosystem were also demonstrated, using objective long-term relations between rangeland conditions and grazing capacity. The study highlights the importance of sustainable rangeland management practices to reduce the loss in effective soil depth and to ensure the sustainable utilization of the rangeland ecosystem. These results can probably extrapolate to other arid and semi-arid rangelands worldwide.