期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Tiny YOLOV3目标检测改进 被引量:31
1
作者 马立 巩笑天 欧阳航空 《光学精密工程》 EI CAS CSCD 北大核心 2020年第4期988-995,共8页
针对Tiny YOLOV3目标检测算法在实时检测中对行人等小目标漏检率高的问题,对该算法的特征提取网络、预测网络、损失函数等进行研究改进。首先,在特征提取网络中增加2步长的卷积层,代替原网络中的最大池化层进行下采样;接着,使用深度可... 针对Tiny YOLOV3目标检测算法在实时检测中对行人等小目标漏检率高的问题,对该算法的特征提取网络、预测网络、损失函数等进行研究改进。首先,在特征提取网络中增加2步长的卷积层,代替原网络中的最大池化层进行下采样;接着,使用深度可分离卷积构造反残差块替换传统卷积,降低模型尺寸和参数量,增加高维特征提取;然后,在原网络两尺度预测的基础上增加一尺度,形成三尺度预测;最后,对损失函数中的边界框位置误差项进行优化。实验结果表明,改进后的Tiny YOLOV3算法的目标检测准确率比原算法提高了9.8%,满足实时性要求,具有一定鲁棒性。本文方法能够更好地提取目标特征,多尺度预测和边界框位置误差的改进能更准确地对目标进行检测。 展开更多
关键词 目标检测 tiny YOLOV3 深度可分离卷积 反残差块 多尺度预测
下载PDF
基于YOLOv5的森林火灾人员救援识别算法
2
作者 孟军帅 张宇萱 +1 位作者 王耀力 常青 《电子设计工程》 2024年第14期189-195,共7页
针对森林火灾救援场景存在小目标实例多、人像重叠、类内个体差异小等特点,造成了救援目标识别漏检误检率高等问题。因此,提出一种基于YOLOv5的森林火灾人员救援识别算法,以提高目标检测精确度。通过将标准卷积模块改进为全维度动态卷... 针对森林火灾救援场景存在小目标实例多、人像重叠、类内个体差异小等特点,造成了救援目标识别漏检误检率高等问题。因此,提出一种基于YOLOv5的森林火灾人员救援识别算法,以提高目标检测精确度。通过将标准卷积模块改进为全维度动态卷积模块,增强目标区域的信息提取能力。同时,增加微小目标尺度预测结构,提高微小目标的识别准确性。林火人员救援数据集的实验结果表明,该方法可使模型平均精确度达到77.7%,较原YOLOv5s提高了2.4%,可有效检测森林火灾场景的人员目标,稳定提升模型的泛化性能。 展开更多
关键词 森林火灾 人员救援 YOLOv5 全维度动态卷积 微小目标尺度预测
下载PDF
基于AE-Tiny YOLOV3的小目标检测模型 被引量:1
3
作者 林莉 姜麟 张志坚 《软件导刊》 2022年第3期55-61,共7页
小目标检测是现阶段目标检测领域的热点和难点问题。针对小目标检测漏检及对硬件性能要求较高的问题,对Tiny YOLOV3进行改进,提出一种适合在低性能平台上使用的小目标检测算法AE-Tiny YOLOV3。首先,使用EfficientNet-B0骨干网络替换原... 小目标检测是现阶段目标检测领域的热点和难点问题。针对小目标检测漏检及对硬件性能要求较高的问题,对Tiny YOLOV3进行改进,提出一种适合在低性能平台上使用的小目标检测算法AE-Tiny YOLOV3。首先,使用EfficientNet-B0骨干网络替换原算法的特征提取网络;其次,在检测网络中增加一个检测分支,形成3尺度预测;最后,引入注意力机制对3个检测分支进行改进。实验结果表明,在VOC07+12数据集上,AE-Tiny YOLOV3算法满足实时检测的要求,并且鲁棒性较高,最高能将mAP值提高16.89%。将AE-Tiny YOLOV3算法应用在架空输电线路中绝缘子状态检测实例上,mAP达到了86.53%,相较于Tiny YOLOV3算法提升了15.27%,能满足对小目标绝缘子状态的实时检测。 展开更多
关键词 小目标检测 tiny YOLOV3 注意力机制 多尺度检测 绝缘子状态检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部