The Wireless Sensor Network (WSN) is spatially distributed autonomous sensor to sense special task. WSN like ZigBee network forms simple interconnecting, low power, and low processing capability wireless devices. The ...The Wireless Sensor Network (WSN) is spatially distributed autonomous sensor to sense special task. WSN like ZigBee network forms simple interconnecting, low power, and low processing capability wireless devices. The ZigBee devices facilitate numerous applications such as pervasive computing, security monitoring and control. ZigBee end devices collect sensing data and send them to ZigBee Coordinator. The Coordinator processes end device requests. The effect of a large number of random unsynchronized requests may degrade the overall network performance. An effective technique is particularly needed for synchronizing available node’s request processing to design a reliable ZigBee network. In this paper, region based priority mechanism is implemented to synchronize request with Tree Routing Method. Riverbed is used to simulate and analyze overall ZigBee network performance. The results show that the performance of the overall priority based ZigBee network model is better than without a priority based model. This research paves the way for further designing and modeling a large scale ZigBee network.展开更多
Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network mode...Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.展开更多
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat...An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.展开更多
This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calcul...This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calculated from electrical and physical parameters of the distributed parameter elements. The proposed method is a direct numerical method of time-space discretization and does not require complicated mathematical deductive process. Therefore, it is very convenient to program this method. It can be applied to sensitivity analysis of general transmission lines in linear or nonlinear circuit networks. The proposed method is second-order-accurate. Numerical experiment is presented to demonstrate its accuracy and efficiency.展开更多
Laser-induced breakdown spectroscopy(LIBS)has been applied to many fields for the quantitative analysis of diverse materials.Improving the prediction accuracy of LIBS regression models is still of great significance f...Laser-induced breakdown spectroscopy(LIBS)has been applied to many fields for the quantitative analysis of diverse materials.Improving the prediction accuracy of LIBS regression models is still of great significance for the Mars exploration in the near future.In this study,we explored the quantitative analysis of LIBS for the one-dimensional Chem Cam(an instrument containing a LIBS spectrometer and a Remote Micro-Imager)spectral data whose spectra are produced by the Chem Cam team using LIBS under the Mars-like atmospheric conditions.We constructed a convolutional neural network(CNN)regression model with unified parameters for all oxides,which is efficient and concise.CNN that has the excellent capability of feature extraction can effectively overcome the chemical matrix effects that impede the prediction accuracy of regression models.Firstly,we explored the effects of four activation functions on the performance of the CNN model.The results show that the CNN model with the hyperbolic tangent(tanh)function outperforms the CNN models with the other activation functions(the rectified linear unit function,the linear function and the Sigmoid function).Secondly,we compared the performance among the CNN models using different optimization methods.The CNN model with the stochastic gradient descent optimization and the initial learning rate?=?0.0005 achieves satisfactory performance compared to the other CNN models.Finally,we compared the performance of the CNN model,the model based on support vector regression(SVR)and the model based on partial least square regression(PLSR).The results exhibit the CNN model is superior to the SVR model and the PLSR model for all oxides.Based on the above analysis,we conclude the CNN regression model can effectively improve the prediction accuracy of LIBS.展开更多
The distribution characteristics of rare earth elements (REE) in bottomsediments are influenced by many factors. Hence, conducting a quantitative analysis isdifficult. A qualitative analysis of the relationships bet...The distribution characteristics of rare earth elements (REE) in bottomsediments are influenced by many factors. Hence, conducting a quantitative analysis isdifficult. A qualitative analysis of the relationships between ΣREE content andprovenance, hydrodynamics, grain size and mineral distribution in the Beibu Gulf showsthat terrestrial rocks control the ΣREE composition. Both weaker hydrodynamics andfiner grain size lead to a higher ΣREE content. Relative curves revealing therelationships between individual impact factors and ΣREE content were obtained fromthe combination of qualitative and quantitative analyses of the BP neural network,which trained the position of samples, gravel content, sand content, silt content, claycontent and clay mineral content. The results are consistent with those of thequantitative analysis. The self-learning algorithm is automatically determined andcalculated quantitatively. The impact of each factor on REEs and how each factorcontrols the ΣREE distribution is identified. Thus, environmental changes and thegeological evolution of the region can be inferred based on curve variation and the geological evolution of the region can be inferred based on curve variation and theactual situation. This method also provides useful theoretical guidance for the analysisof REE enrichment and dispersion.展开更多
Distributed Generation (DG) in any quantity is relevant to supplement the available energy capacity based on various locations, that is, whether a site specific or non-site specific energy technology. The evacuation i...Distributed Generation (DG) in any quantity is relevant to supplement the available energy capacity based on various locations, that is, whether a site specific or non-site specific energy technology. The evacuation infrastructure that delivers power to the distribution grid is designed with appropriate capacity in terms of size and length. The evacuation lines and distribution network however behave differently as they possess inherent characteristics and are exposed to varying external conditions. It is thus feasible to expect that these networks behave stochastically due to fault conditions and variable loads that destabilize the system. This in essence impacts on the availability of the evacuation infrastructure and consequently on the amount of energy delivered to the grid from the DG stations. Reliability of the evacuation point of a DG is however not a common or prioritized criteria in the decision process that guides investment in DG. This paper reviews a planned solar based DG plant in Uganda. Over the last couple of years, Uganda has seen a significant increase in the penetration levels of DG. With a network that is predominantly radial and experiences low reliability levels, one would thus expect reliability analysis to feature significantly in the assessment of the proposed DG plants. This is however not the case. This paper, uses reliability analysis to assess the impact of different evacuation options of the proposed DG plant on its dispatch levels. The evacuation options were selected based on infrastructure options in other locations with similar solar irradiances as the planned DG location. Outage data were collected and analyzed using the chi square method. It was found to be variable and fitting to different Probability Distribution Functions (PDF). Using stochastic methods, a model that incorporates the PDFs was developed to compute the reliability indices. These were assessed using chi square and found to be variable and fitting different PDFs as well. The viability of the project is reviewed based on Energy Not Supplied (ENS) and the anticipated project payback periods for any considered evacuation line. The results of the study are also reviewed for the benefit of other stakeholders like the customers, the utility and the regulatory body.展开更多
In recent years, aluminum-matrix composites (AMCs) have been widely used to replace cast iron in aerospace and automotive industries. Machining of these composite materials requires better understanding of cutting pro...In recent years, aluminum-matrix composites (AMCs) have been widely used to replace cast iron in aerospace and automotive industries. Machining of these composite materials requires better understanding of cutting processes re- garding accuracy and efficiency. This study addresses the modeling of the machinability of self-lubricated aluminum /alumina/graphite hybrid composites synthesized by the powder metallurgy method. In this study, multiple regression analysis (MRA) and artificial neural networks (ANN) were used to investigate the influence of some parameters on the thrust force and torque in the drilling processes of self-lubricated hybrid composite materials. The models were identi- fied by using cutting speed, feed, and volume fraction of the reinforcement particles as input data and the thrust force and torque as the output data. A comparison between two prediction methods was developed to compare the prediction accuracy. ANNs showed better predictability results compared to MRA due to the nonlinearity nature of ANNs. The statistical analysis accompanied with artificial neural network results showed that Al2O3, Gr and cutting feed (f) were the most significant parameters on the drilling process, while spindle speed seemed insignificant. Since the spindle speed was insignificant, it directed us to set it either at the highest spindle speed to obtain high material removal rate or at the lowest spindle speed to prolong the tool life depending on the need for the application.展开更多
Mitigating increasing cyberattack incidents may require strategies such as reinforcing organizations’ networks with Honeypots and effectively analyzing attack traffic for detection of zero-day attacks and vulnerabili...Mitigating increasing cyberattack incidents may require strategies such as reinforcing organizations’ networks with Honeypots and effectively analyzing attack traffic for detection of zero-day attacks and vulnerabilities. To effectively detect and mitigate cyberattacks, both computerized and visual analyses are typically required. However, most security analysts are not adequately trained in visualization principles and/or methods, which is required for effective visual perception of useful attack information hidden in attack data. Additionally, Honeypot has proven useful in cyberattack research, but no studies have comprehensively investigated visualization practices in the field. In this paper, we reviewed visualization practices and methods commonly used in the discovery and communication of attack patterns based on Honeypot network traffic data. Using the PRISMA methodology, we identified and screened 218 papers and evaluated only 37 papers having a high impact. Most Honeypot papers conducted summary statistics of Honeypot data based on static data metrics such as IP address, port, and packet size. They visually analyzed Honeypot attack data using simple graphical methods (such as line, bar, and pie charts) that tend to hide useful attack information. Furthermore, only a few papers conducted extended attack analysis, and commonly visualized attack data using scatter and linear plots. Papers rarely included simple yet sophisticated graphical methods, such as box plots and histograms, which allow for critical evaluation of analysis results. While a significant number of automated visualization tools have incorporated visualization standards by default, the construction of effective and expressive graphical methods for easy pattern discovery and explainable insights still requires applied knowledge and skill of visualization principles and tools, and occasionally, an interdisciplinary collaboration with peers. We, therefore, suggest the need, going forward, for non-classical graphical methods for visualizing attack patterns and communicating analysis results. We also recommend training investigators in visualization principles and standards for effective visual perception and presentation.展开更多
In order to effectively cope with exponent increase of the complexity faced to the rock mechanics analysis problems and the large incompatibility existing between the information level required to model the rock mass ...In order to effectively cope with exponent increase of the complexity faced to the rock mechanics analysis problems and the large incompatibility existing between the information level required to model the rock mass and engineering and our obtainable information level at hand,the integrated approaches with intelligent characters are proposed. Many previous standard methods,such as precedent type analysis,rock classification,analytic method stress-based,basic numerical methods (BEM,FEM,DEM,hybrid),and their extended numerical methods (fully coupled) to be developed,can be selected respectively or integrated accordingly. It is alternative to develop basic/fully integrated system,and internet-based approaches. These novel methods can also be selected or integrated each other or with the standard methods to perform rock mechanics analysis. Some key techniques to develop these alternative methods are discussed. It may focus in future on developing fully integrated systems and internet-based approaches. Developing an environmental,virtual facility/space shall be firstly done for this collaborative research on internet.展开更多
In this paper,a fault location method for the petal-shaped distribution network(PSDN)with inverter-interfaced distributed generators(IIDGs)is proposed to shorten the time of manual inspection.In order to calculate the...In this paper,a fault location method for the petal-shaped distribution network(PSDN)with inverter-interfaced distributed generators(IIDGs)is proposed to shorten the time of manual inspection.In order to calculate the fault position,the closed-loop structure of the PSDN is skillfully exploited,and the common control strategies of IIDGs are considered.For asymmetrical faults,a fault line identification formula based on the negative-sequence current phase differences is presented,and a fault location formula only utilizing the negative-sequence current amplitudes is derived to calculated the fault position.For symmetrical faults,the positive-sequence current at both ends of lines and the current output from IIDGs are used to identify the fault line,and the positive-sequence current on multiple lines are used to pinpoint the fault position.In this method,corresponding current phasors are separated into amplitudes and phases to satisfy the limitation of communication level.The simulation results show that the error is generally less than 1%,and the accuracy of the proposed method is not affected by the fault type,fault position,fault resistance,load current,and the IIDG penetration.展开更多
Because the main failure type of a dangerous rock mass is collapse, the treatment of such a mass should focus on controlling collapse failure. When treating dangerous rock masses, disturbing the mass (e. g. by blast...Because the main failure type of a dangerous rock mass is collapse, the treatment of such a mass should focus on controlling collapse failure. When treating dangerous rock masses, disturbing the mass (e. g. by blasting) needs to be avoided, as this new damage could cause collapse. So the self-bearing capacity of the mountain mass must be used to treat the dangerous rock mass. This article is based on a practical example of the control of a dangerous rock mass at Banyan Mountain, Huangshi, Hubei Province. On the basis of an analysis of damage mechanism and the stability of the dangerous rock mass, a flexible network reinforcement method was designed to prevent the collapse of the rock mass. The deformations of section Ⅱ w of the dangerous rock mass before and after the flexible network reinforcement were calculated using the two-dimensional finite element method. The results show that the maximum deformation reduced by 55 % after the application of the flexible network reinforcement, from 45.99 to 20.75 ram, which demonstrates that the flexible network method is effective, and can provide some scientific basis for the treatment of dangerous rock masses.展开更多
The altered blood flow in the foot is an important indicator of early diabetic foot complications.However,it is challenging to measure the blood flow at the whole foot scale.This study presents an approach for estimat...The altered blood flow in the foot is an important indicator of early diabetic foot complications.However,it is challenging to measure the blood flow at the whole foot scale.This study presents an approach for estimating the foot arterial blood flow using the temperature distribution and an artificial neural network.To quantify the relationship between the blood flow and the temperature distribution,a bioheat transfer model of a voxel-meshed foot tissue with discrete blood vessels is established based on the computed tomography(CT)sequential images and the anatomical information of the vascular structure.In our model,the heat transfer from blood vessels and tissue and the inter-domain heat exchange between them are considered thoroughly,and the computed temperatures are consistent with the experimental results.Analytical data are then used to train a neural network to determine the foot arterial blood flow.The trained network is able to estimate the objective blood flow for various degrees of stenosis in multiple blood vessels with an accuracy rate of more than 90%.Compared with the Pennes bioheat transfer equation,this model fully describes intra-and inter-domain heat transfer in blood vessels and tissue,closely approximating physiological conditions.By introducing a vascular component to an inverse model,the blood flow itself,rather than blood perfusion,can be estimated,directly informing vascular health.展开更多
The fixed-time synchronization and preassigned-time synchronization are investigated for a class of quaternion-valued neural networks with time-varying delays and discontinuous activation functions. Unlike previous ef...The fixed-time synchronization and preassigned-time synchronization are investigated for a class of quaternion-valued neural networks with time-varying delays and discontinuous activation functions. Unlike previous efforts that employed separation analysis and the real-valued control design, based on the quaternion-valued signum function and several related properties, a direct analytical method is proposed here and the quaternion-valued controllers are designed in order to discuss the fixed-time synchronization for the relevant quaternion-valued neural networks. In addition, the preassigned-time synchronization is investigated based on a quaternion-valued control design, where the synchronization time is preassigned and the control gains are finite. Compared with existing results, the direct method without separation developed in this article is beneficial in terms of simplifying theoretical analysis, and the proposed quaternion-valued control schemes are simpler and more effective than the traditional design, which adds four real-valued controllers. Finally, two numerical examples are given in order to support the theoretical results.展开更多
The exchanges between cities and counties in the northern slope economic belt of Tianshan Mountains(NSEBTM)are increasingly frequent and the economic linkages are increasingly close,but the spatial distribution of eco...The exchanges between cities and counties in the northern slope economic belt of Tianshan Mountains(NSEBTM)are increasingly frequent and the economic linkages are increasingly close,but the spatial distribution of economic development and linkages among the cities and counties within NSEBTM is uneven.Therefore,it is of great significance to study the evolution of spatial-temporal pattern of the economic linkage network of cities and counties on NSEBTM to promote the coordinated and integrated development of the regional economy on NSEBTM.In this study,we used the modified gravity model and social network analysis method to analyze the spatio-temporal evolution characteristics of the economic linkage network structure of cities and counties on NSEBTM in 2000,2010,and 2020.The results showed that the comprehensive development quality level of cities and counties on NSEBTM increased from 2000 to 2020,its growth rate also increased,and its gap between cities and counties continued expanding.Both the spatial distribution patterns of the comprehensive development quality level of cities and counties on NSEBTM in 2000 and 2010 were presented as“high in the middle and low at both ends”,while the spatial distribution pattern of 2020 was exhibited as“high value and low value staggered”.The total amount of external economic linkages of cities and counties on NSEBTM showed an obvious upward trend,and its gap between cities and counties continued expanding,presenting a pattern of“a strong middle section and weak ends”.The direction of economic linkages of NSEBTM existed obvious central orientation and geographical proximity.The density of economic linkage network of NSEBTM increased from 2000 to 2020,and the structure of economic linkage network changed from single-core structure centered with Urumqi City to multicore structure centered with Urumqi City,Karamay City,Shihezi City,and Changji City,shifting from unbalanced development to balanced development.In the future,we should accelerate the construction of urban agglomeration on NSEBTM,cultivate a modern Urumqi metropolitan area,improve comprehensive development quality of the cities and counties at the eastern and western ends,strengthen the intensity of economic linkages between cities and counties,optimize the economic linkage network,and promote the coordinated and integrated development of regional economy.展开更多
The inter-class face classification problem is more reasonable than the intra-class classification problem.To address this issue,we have carried out empirical research on classifying Indian people to their geographica...The inter-class face classification problem is more reasonable than the intra-class classification problem.To address this issue,we have carried out empirical research on classifying Indian people to their geographical regions.This work aimed to construct a computational classification model for classifying Indian regional face images acquired from south and east regions of India,referring to human vision.We have created an Automated Human Intelligence System(AHIS)to evaluate human visual capabilities.Analysis of AHIS response showed that face shape is a discriminative feature among the other facial features.We have developed a modified convolutional neural network to characterize the human vision response to improve face classification accuracy.The proposed model achieved mean F1 and Matthew Correlation Coefficient(MCC)of 0.92 and 0.84,respectively,on the validation set,outperforming the traditional Convolutional Neural Network(CNN).The CNN-Contoured Face(CNN-FC)model is developed to train contoured face images to investigate the influence of face shape.Finally,to cross-validate the accuracy of these models,the traditional CNN model is trained on the same dataset.With an accuracy of 92.98%,the Modified-CNN(M-CNN)model has demonstrated that the proposed method could facilitate the tangible impact in intra-classification problems.A novel Indian regional face dataset is created for supporting this supervised classification work,and it will be available to the research community.展开更多
In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor s...In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor side magnetic bridge.This structure improves the air-gap flux density waveform of the motor by influencing the internal magnetic flux path of the motor rotor,thus improving the sine of the no-load back EMF waveform of the motor and reducing the torque ripple of the motor.At the same time,Taguchi method is used to optimize the structural parameters of the added magnetic barrier.In order to facilitate the analysis of its uneven saturation phenomenon and improve the optimization effect,a simple equivalent magnetic network(EMN)model considering the uneven saturation of rotor magnetic bridge is established in this paper,and the initial values of optimization factors are selected based on this model.Finally,the no-load back EMF waveform distortion rate,torque ripple and output torque of the optimized motor are compared and analyzed,and the influence of magnetic barrier structure parameters on the electromagnetic performance of the motor is also analyzed.The results show that the optimized motor can not change the output torque of the motor as much as possible on the basis of reducing the waveform distortion rate of no-load back EMF and torque ripple.展开更多
文摘The Wireless Sensor Network (WSN) is spatially distributed autonomous sensor to sense special task. WSN like ZigBee network forms simple interconnecting, low power, and low processing capability wireless devices. The ZigBee devices facilitate numerous applications such as pervasive computing, security monitoring and control. ZigBee end devices collect sensing data and send them to ZigBee Coordinator. The Coordinator processes end device requests. The effect of a large number of random unsynchronized requests may degrade the overall network performance. An effective technique is particularly needed for synchronizing available node’s request processing to design a reliable ZigBee network. In this paper, region based priority mechanism is implemented to synchronize request with Tree Routing Method. Riverbed is used to simulate and analyze overall ZigBee network performance. The results show that the performance of the overall priority based ZigBee network model is better than without a priority based model. This research paves the way for further designing and modeling a large scale ZigBee network.
基金Project(51321065)supported by the Innovative Research Groups of the National Natural Science Foundation of ChinaProject(2013CB035904)supported by the National Basic Research Program of China(973 Program)Project(51439005)supported by the National Natural Science Foundation of China
文摘Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.
基金The National Natural Science Foundation of China under contract No.51379002the Fundamental Research Funds for the Central Universities of China under contract Nos 3132016322 and 3132016314the Applied Basic Research Project Fund of the Chinese Ministry of Transport of China under contract No.2014329225010
文摘An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.
文摘This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calculated from electrical and physical parameters of the distributed parameter elements. The proposed method is a direct numerical method of time-space discretization and does not require complicated mathematical deductive process. Therefore, it is very convenient to program this method. It can be applied to sensitivity analysis of general transmission lines in linear or nonlinear circuit networks. The proposed method is second-order-accurate. Numerical experiment is presented to demonstrate its accuracy and efficiency.
基金supported by the Pre-research project on Civil Aerospace Technologies(No.D020102)funded by China National Space Administration(CNSA)the funding from National Natural Science Foundation of China(Nos.U1931211,41573056)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2019MD008)the Major Research Project of Shandong Province(No.GG201809130208)。
文摘Laser-induced breakdown spectroscopy(LIBS)has been applied to many fields for the quantitative analysis of diverse materials.Improving the prediction accuracy of LIBS regression models is still of great significance for the Mars exploration in the near future.In this study,we explored the quantitative analysis of LIBS for the one-dimensional Chem Cam(an instrument containing a LIBS spectrometer and a Remote Micro-Imager)spectral data whose spectra are produced by the Chem Cam team using LIBS under the Mars-like atmospheric conditions.We constructed a convolutional neural network(CNN)regression model with unified parameters for all oxides,which is efficient and concise.CNN that has the excellent capability of feature extraction can effectively overcome the chemical matrix effects that impede the prediction accuracy of regression models.Firstly,we explored the effects of four activation functions on the performance of the CNN model.The results show that the CNN model with the hyperbolic tangent(tanh)function outperforms the CNN models with the other activation functions(the rectified linear unit function,the linear function and the Sigmoid function).Secondly,we compared the performance among the CNN models using different optimization methods.The CNN model with the stochastic gradient descent optimization and the initial learning rate?=?0.0005 achieves satisfactory performance compared to the other CNN models.Finally,we compared the performance of the CNN model,the model based on support vector regression(SVR)and the model based on partial least square regression(PLSR).The results exhibit the CNN model is superior to the SVR model and the PLSR model for all oxides.Based on the above analysis,we conclude the CNN regression model can effectively improve the prediction accuracy of LIBS.
文摘The distribution characteristics of rare earth elements (REE) in bottomsediments are influenced by many factors. Hence, conducting a quantitative analysis isdifficult. A qualitative analysis of the relationships between ΣREE content andprovenance, hydrodynamics, grain size and mineral distribution in the Beibu Gulf showsthat terrestrial rocks control the ΣREE composition. Both weaker hydrodynamics andfiner grain size lead to a higher ΣREE content. Relative curves revealing therelationships between individual impact factors and ΣREE content were obtained fromthe combination of qualitative and quantitative analyses of the BP neural network,which trained the position of samples, gravel content, sand content, silt content, claycontent and clay mineral content. The results are consistent with those of thequantitative analysis. The self-learning algorithm is automatically determined andcalculated quantitatively. The impact of each factor on REEs and how each factorcontrols the ΣREE distribution is identified. Thus, environmental changes and thegeological evolution of the region can be inferred based on curve variation and the geological evolution of the region can be inferred based on curve variation and theactual situation. This method also provides useful theoretical guidance for the analysisof REE enrichment and dispersion.
文摘Distributed Generation (DG) in any quantity is relevant to supplement the available energy capacity based on various locations, that is, whether a site specific or non-site specific energy technology. The evacuation infrastructure that delivers power to the distribution grid is designed with appropriate capacity in terms of size and length. The evacuation lines and distribution network however behave differently as they possess inherent characteristics and are exposed to varying external conditions. It is thus feasible to expect that these networks behave stochastically due to fault conditions and variable loads that destabilize the system. This in essence impacts on the availability of the evacuation infrastructure and consequently on the amount of energy delivered to the grid from the DG stations. Reliability of the evacuation point of a DG is however not a common or prioritized criteria in the decision process that guides investment in DG. This paper reviews a planned solar based DG plant in Uganda. Over the last couple of years, Uganda has seen a significant increase in the penetration levels of DG. With a network that is predominantly radial and experiences low reliability levels, one would thus expect reliability analysis to feature significantly in the assessment of the proposed DG plants. This is however not the case. This paper, uses reliability analysis to assess the impact of different evacuation options of the proposed DG plant on its dispatch levels. The evacuation options were selected based on infrastructure options in other locations with similar solar irradiances as the planned DG location. Outage data were collected and analyzed using the chi square method. It was found to be variable and fitting to different Probability Distribution Functions (PDF). Using stochastic methods, a model that incorporates the PDFs was developed to compute the reliability indices. These were assessed using chi square and found to be variable and fitting different PDFs as well. The viability of the project is reviewed based on Energy Not Supplied (ENS) and the anticipated project payback periods for any considered evacuation line. The results of the study are also reviewed for the benefit of other stakeholders like the customers, the utility and the regulatory body.
文摘In recent years, aluminum-matrix composites (AMCs) have been widely used to replace cast iron in aerospace and automotive industries. Machining of these composite materials requires better understanding of cutting processes re- garding accuracy and efficiency. This study addresses the modeling of the machinability of self-lubricated aluminum /alumina/graphite hybrid composites synthesized by the powder metallurgy method. In this study, multiple regression analysis (MRA) and artificial neural networks (ANN) were used to investigate the influence of some parameters on the thrust force and torque in the drilling processes of self-lubricated hybrid composite materials. The models were identi- fied by using cutting speed, feed, and volume fraction of the reinforcement particles as input data and the thrust force and torque as the output data. A comparison between two prediction methods was developed to compare the prediction accuracy. ANNs showed better predictability results compared to MRA due to the nonlinearity nature of ANNs. The statistical analysis accompanied with artificial neural network results showed that Al2O3, Gr and cutting feed (f) were the most significant parameters on the drilling process, while spindle speed seemed insignificant. Since the spindle speed was insignificant, it directed us to set it either at the highest spindle speed to obtain high material removal rate or at the lowest spindle speed to prolong the tool life depending on the need for the application.
文摘Mitigating increasing cyberattack incidents may require strategies such as reinforcing organizations’ networks with Honeypots and effectively analyzing attack traffic for detection of zero-day attacks and vulnerabilities. To effectively detect and mitigate cyberattacks, both computerized and visual analyses are typically required. However, most security analysts are not adequately trained in visualization principles and/or methods, which is required for effective visual perception of useful attack information hidden in attack data. Additionally, Honeypot has proven useful in cyberattack research, but no studies have comprehensively investigated visualization practices in the field. In this paper, we reviewed visualization practices and methods commonly used in the discovery and communication of attack patterns based on Honeypot network traffic data. Using the PRISMA methodology, we identified and screened 218 papers and evaluated only 37 papers having a high impact. Most Honeypot papers conducted summary statistics of Honeypot data based on static data metrics such as IP address, port, and packet size. They visually analyzed Honeypot attack data using simple graphical methods (such as line, bar, and pie charts) that tend to hide useful attack information. Furthermore, only a few papers conducted extended attack analysis, and commonly visualized attack data using scatter and linear plots. Papers rarely included simple yet sophisticated graphical methods, such as box plots and histograms, which allow for critical evaluation of analysis results. While a significant number of automated visualization tools have incorporated visualization standards by default, the construction of effective and expressive graphical methods for easy pattern discovery and explainable insights still requires applied knowledge and skill of visualization principles and tools, and occasionally, an interdisciplinary collaboration with peers. We, therefore, suggest the need, going forward, for non-classical graphical methods for visualizing attack patterns and communicating analysis results. We also recommend training investigators in visualization principles and standards for effective visual perception and presentation.
基金Nature Science Foundation of China under Grant no.50179034.
文摘In order to effectively cope with exponent increase of the complexity faced to the rock mechanics analysis problems and the large incompatibility existing between the information level required to model the rock mass and engineering and our obtainable information level at hand,the integrated approaches with intelligent characters are proposed. Many previous standard methods,such as precedent type analysis,rock classification,analytic method stress-based,basic numerical methods (BEM,FEM,DEM,hybrid),and their extended numerical methods (fully coupled) to be developed,can be selected respectively or integrated accordingly. It is alternative to develop basic/fully integrated system,and internet-based approaches. These novel methods can also be selected or integrated each other or with the standard methods to perform rock mechanics analysis. Some key techniques to develop these alternative methods are discussed. It may focus in future on developing fully integrated systems and internet-based approaches. Developing an environmental,virtual facility/space shall be firstly done for this collaborative research on internet.
基金supported by State Grid Science and Technology Project:Research on Key Protection Technologies for New-type Urban Distribution Network with Controllable Sources and Loads(5100-201913019A-0-0-00).
文摘In this paper,a fault location method for the petal-shaped distribution network(PSDN)with inverter-interfaced distributed generators(IIDGs)is proposed to shorten the time of manual inspection.In order to calculate the fault position,the closed-loop structure of the PSDN is skillfully exploited,and the common control strategies of IIDGs are considered.For asymmetrical faults,a fault line identification formula based on the negative-sequence current phase differences is presented,and a fault location formula only utilizing the negative-sequence current amplitudes is derived to calculated the fault position.For symmetrical faults,the positive-sequence current at both ends of lines and the current output from IIDGs are used to identify the fault line,and the positive-sequence current on multiple lines are used to pinpoint the fault position.In this method,corresponding current phasors are separated into amplitudes and phases to satisfy the limitation of communication level.The simulation results show that the error is generally less than 1%,and the accuracy of the proposed method is not affected by the fault type,fault position,fault resistance,load current,and the IIDG penetration.
文摘Because the main failure type of a dangerous rock mass is collapse, the treatment of such a mass should focus on controlling collapse failure. When treating dangerous rock masses, disturbing the mass (e. g. by blasting) needs to be avoided, as this new damage could cause collapse. So the self-bearing capacity of the mountain mass must be used to treat the dangerous rock mass. This article is based on a practical example of the control of a dangerous rock mass at Banyan Mountain, Huangshi, Hubei Province. On the basis of an analysis of damage mechanism and the stability of the dangerous rock mass, a flexible network reinforcement method was designed to prevent the collapse of the rock mass. The deformations of section Ⅱ w of the dangerous rock mass before and after the flexible network reinforcement were calculated using the two-dimensional finite element method. The results show that the maximum deformation reduced by 55 % after the application of the flexible network reinforcement, from 45.99 to 20.75 ram, which demonstrates that the flexible network method is effective, and can provide some scientific basis for the treatment of dangerous rock masses.
基金the National Natural Science Foundation of China(No.51976026)the Fundamental Research Funds of Central Universities of China(No.DUT22YG206)。
文摘The altered blood flow in the foot is an important indicator of early diabetic foot complications.However,it is challenging to measure the blood flow at the whole foot scale.This study presents an approach for estimating the foot arterial blood flow using the temperature distribution and an artificial neural network.To quantify the relationship between the blood flow and the temperature distribution,a bioheat transfer model of a voxel-meshed foot tissue with discrete blood vessels is established based on the computed tomography(CT)sequential images and the anatomical information of the vascular structure.In our model,the heat transfer from blood vessels and tissue and the inter-domain heat exchange between them are considered thoroughly,and the computed temperatures are consistent with the experimental results.Analytical data are then used to train a neural network to determine the foot arterial blood flow.The trained network is able to estimate the objective blood flow for various degrees of stenosis in multiple blood vessels with an accuracy rate of more than 90%.Compared with the Pennes bioheat transfer equation,this model fully describes intra-and inter-domain heat transfer in blood vessels and tissue,closely approximating physiological conditions.By introducing a vascular component to an inverse model,the blood flow itself,rather than blood perfusion,can be estimated,directly informing vascular health.
基金supported by the National Natural Science Foundation of China (61963033, 61866036, 62163035)the Key Project of Natural Science Foundation of Xinjiang (2021D01D10)+1 种基金the Xinjiang Key Laboratory of Applied Mathematics (XJDX1401)the Special Project for Local Science and Technology Development Guided by the Central Government (ZYYD2022A05)。
文摘The fixed-time synchronization and preassigned-time synchronization are investigated for a class of quaternion-valued neural networks with time-varying delays and discontinuous activation functions. Unlike previous efforts that employed separation analysis and the real-valued control design, based on the quaternion-valued signum function and several related properties, a direct analytical method is proposed here and the quaternion-valued controllers are designed in order to discuss the fixed-time synchronization for the relevant quaternion-valued neural networks. In addition, the preassigned-time synchronization is investigated based on a quaternion-valued control design, where the synchronization time is preassigned and the control gains are finite. Compared with existing results, the direct method without separation developed in this article is beneficial in terms of simplifying theoretical analysis, and the proposed quaternion-valued control schemes are simpler and more effective than the traditional design, which adds four real-valued controllers. Finally, two numerical examples are given in order to support the theoretical results.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(2021xjkk0905).
文摘The exchanges between cities and counties in the northern slope economic belt of Tianshan Mountains(NSEBTM)are increasingly frequent and the economic linkages are increasingly close,but the spatial distribution of economic development and linkages among the cities and counties within NSEBTM is uneven.Therefore,it is of great significance to study the evolution of spatial-temporal pattern of the economic linkage network of cities and counties on NSEBTM to promote the coordinated and integrated development of the regional economy on NSEBTM.In this study,we used the modified gravity model and social network analysis method to analyze the spatio-temporal evolution characteristics of the economic linkage network structure of cities and counties on NSEBTM in 2000,2010,and 2020.The results showed that the comprehensive development quality level of cities and counties on NSEBTM increased from 2000 to 2020,its growth rate also increased,and its gap between cities and counties continued expanding.Both the spatial distribution patterns of the comprehensive development quality level of cities and counties on NSEBTM in 2000 and 2010 were presented as“high in the middle and low at both ends”,while the spatial distribution pattern of 2020 was exhibited as“high value and low value staggered”.The total amount of external economic linkages of cities and counties on NSEBTM showed an obvious upward trend,and its gap between cities and counties continued expanding,presenting a pattern of“a strong middle section and weak ends”.The direction of economic linkages of NSEBTM existed obvious central orientation and geographical proximity.The density of economic linkage network of NSEBTM increased from 2000 to 2020,and the structure of economic linkage network changed from single-core structure centered with Urumqi City to multicore structure centered with Urumqi City,Karamay City,Shihezi City,and Changji City,shifting from unbalanced development to balanced development.In the future,we should accelerate the construction of urban agglomeration on NSEBTM,cultivate a modern Urumqi metropolitan area,improve comprehensive development quality of the cities and counties at the eastern and western ends,strengthen the intensity of economic linkages between cities and counties,optimize the economic linkage network,and promote the coordinated and integrated development of regional economy.
文摘The inter-class face classification problem is more reasonable than the intra-class classification problem.To address this issue,we have carried out empirical research on classifying Indian people to their geographical regions.This work aimed to construct a computational classification model for classifying Indian regional face images acquired from south and east regions of India,referring to human vision.We have created an Automated Human Intelligence System(AHIS)to evaluate human visual capabilities.Analysis of AHIS response showed that face shape is a discriminative feature among the other facial features.We have developed a modified convolutional neural network to characterize the human vision response to improve face classification accuracy.The proposed model achieved mean F1 and Matthew Correlation Coefficient(MCC)of 0.92 and 0.84,respectively,on the validation set,outperforming the traditional Convolutional Neural Network(CNN).The CNN-Contoured Face(CNN-FC)model is developed to train contoured face images to investigate the influence of face shape.Finally,to cross-validate the accuracy of these models,the traditional CNN model is trained on the same dataset.With an accuracy of 92.98%,the Modified-CNN(M-CNN)model has demonstrated that the proposed method could facilitate the tangible impact in intra-classification problems.A novel Indian regional face dataset is created for supporting this supervised classification work,and it will be available to the research community.
基金supported by the National Natural Science Funds of China No.51907129Technology program of Liaoning province No.2021-MS-236。
文摘In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor side magnetic bridge.This structure improves the air-gap flux density waveform of the motor by influencing the internal magnetic flux path of the motor rotor,thus improving the sine of the no-load back EMF waveform of the motor and reducing the torque ripple of the motor.At the same time,Taguchi method is used to optimize the structural parameters of the added magnetic barrier.In order to facilitate the analysis of its uneven saturation phenomenon and improve the optimization effect,a simple equivalent magnetic network(EMN)model considering the uneven saturation of rotor magnetic bridge is established in this paper,and the initial values of optimization factors are selected based on this model.Finally,the no-load back EMF waveform distortion rate,torque ripple and output torque of the optimized motor are compared and analyzed,and the influence of magnetic barrier structure parameters on the electromagnetic performance of the motor is also analyzed.The results show that the optimized motor can not change the output torque of the motor as much as possible on the basis of reducing the waveform distortion rate of no-load back EMF and torque ripple.