We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in...We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in a power-law form, which is different from the well-known result in unweighted network case. Simulation results show that the nodes with larger strength are preferential to be infected, but the hierarchical dynamics are not clearly found. The simulation results also show that larger dispersion of weight of networks leads to slower propagating, which indicates that malicious code propagates more quickly in unweighted scale-free networks than in weighted scale-free networks under the same condition. These results show that not only the topology of networks but also the link weights affect the malicious propagating process.展开更多
An improved weighted scale-free network, which has two evolution mechanisms: topological growth and strength dynamics, has been introduced. The topology structure of the model will be explored in details in this work...An improved weighted scale-free network, which has two evolution mechanisms: topological growth and strength dynamics, has been introduced. The topology structure of the model will be explored in details in this work. The evolution driven mechanism of Olami-Feder Christensen (OFC) model is added to our model to study the self-organlzed criticality and the dynamical behavior. We also.consider attack mechanism and the study of the model with attack is also investigated in this paper. We tlnd there are differences between the model with attack and without attack.展开更多
By means of the series method, we obtain the exact analytical solution of clustering coefficient in random Apollonian networks [Phys. Rev. E 71 (2005)046141]. Our exact analytical result is identical with the simula...By means of the series method, we obtain the exact analytical solution of clustering coefficient in random Apollonian networks [Phys. Rev. E 71 (2005)046141]. Our exact analytical result is identical with the simulation, whereas in the original work, there is a deviation of about 4% between their approximate analytical result and the simulation.展开更多
Scale-free topology and high clustering coexist in some real networks, and keep invariant for growing sizes of the systems. Previous models could hardly give out size-independent clustering with self- organized mechan...Scale-free topology and high clustering coexist in some real networks, and keep invariant for growing sizes of the systems. Previous models could hardly give out size-independent clustering with self- organized mechanism when succeeded in producing power-law degree distributions. Always ignored, some empirical statistic results display flat-head power-law behaviors. We modify our recent coevo- lutionary model to explain such phenomena with the inert property of nodes to retain small portion of unfavorable links in self-organized rewiring process. Flat-head power-law and size-independent clustering are induced as the new characteristics by this modification. In addition, a new scaling relation is found as the result of interplay between node state growth and adaptive variation of connections.展开更多
The small-world network, proposed by Watts and Strogatz, has been extensively studied for the past over ten years. In this paper, a generalized smMl-world network is proposed, which extends severM small-world network ...The small-world network, proposed by Watts and Strogatz, has been extensively studied for the past over ten years. In this paper, a generalized smMl-world network is proposed, which extends severM small-world network models. Furthermore, some properties of a special type of generalized small-world network with given expectation of edge numbers have been investigated, such as the degree distribution and the isoperimetric number. These results are used to present a lower and an upper bounds for the clustering coefficient and the diameter of the given edge number expectation generalized small-world network, respectively. In other words, we prove mathematically that the given edge number expectation generalized small-world network possesses large clustering coefficient and small diameter.展开更多
Triadic closure is a simple and fundamental kind of link formulation mechanism in network.Local closure coefficient(LCC),a new network property,is to measure the triadic closure with respect to the fraction of length-...Triadic closure is a simple and fundamental kind of link formulation mechanism in network.Local closure coefficient(LCC),a new network property,is to measure the triadic closure with respect to the fraction of length-2 paths for link prediction.In this paper,a weighted format of LCC(WLCC)is introduced to measure the weighted strength of local triadic structure,and a statistic similari-ty-based link prediction metric is proposed to incorporate the definition of WLCC.To prove the metrics effectiveness and scalability,the WLCC formula-tion was further investigated under weighted local Naive Bayes(WLNB)link prediction framework.Finally,extensive experimental studies was conducted with weighted baseline metrics on various public network datasets.The results demonstrate the merits of the proposed metrics in comparison with the weighted baselines.展开更多
For most networks, the weight of connection is changing with their attachment and inner affinity. By introducing a mixed mechanism of weighted-driven and inner selection, the model exhibits wide range power-law distri...For most networks, the weight of connection is changing with their attachment and inner affinity. By introducing a mixed mechanism of weighted-driven and inner selection, the model exhibits wide range power-law distributions of node strength and edge weight, and the exponent can be adjusted by not only the parameter δ but also the probability q. Furthermore, we investigate the weighted average shortest distance, clustering coefficient, and the correlation of our network. In addition, the weighted assortativity coefficient which characterizes important information of weighted topological networks has been discussed, but the variation of coefficients is much smaller than the former researches.展开更多
In this paper, an energy efficient clustering algorithm based on neighbors (EECABN) for wireless sensor networks is proposed. In the algorithm, an optimized weight of nodes is introduced to determine the priority of...In this paper, an energy efficient clustering algorithm based on neighbors (EECABN) for wireless sensor networks is proposed. In the algorithm, an optimized weight of nodes is introduced to determine the priority of clustering procedure. As improvement, the weight is a measurement of energy and degree as usual, and even associates with distance from neighbors, distance to the sink node, and other factors. To prevent the low energy nodes being exhausted with energy, the strong nodes should have more opportunities to act as cluster heads during the clustering procedure. The simulation results show that the algorithm can effectively prolong whole the network lifetime. Especially at the early stage that some nodes in the network begin to die, the process can be postponed by using the algorithm.展开更多
In order to describe the self-organization of communities in the evolution of weighted networks, we propose a new evolving model for weighted community-structured networks with the preferential mechanisms functioned i...In order to describe the self-organization of communities in the evolution of weighted networks, we propose a new evolving model for weighted community-structured networks with the preferential mechanisms functioned in different levels according to community sizes and node strengths, respectively. Theoretical analyses and numerical simulations show that our model captures power-law distributions of community sizes, node strengths, and link weights, with tunable exponents of v ≥ 1, γ 〉 2, and α 〉 2, respectively, sharing large clustering coefficients and scaling clustering spectra, and covering the range from disassortative networks to assortative networks. Finally, we apply our new model to the scientific co-authorship networks with both their weighted and unweighted datasets to verify its effectiveness.展开更多
With the popularity of wireless networks and the prevalence of personal mobile computing devices, understanding the characteristic of wireless network users is of great significance to the network performance. In this...With the popularity of wireless networks and the prevalence of personal mobile computing devices, understanding the characteristic of wireless network users is of great significance to the network performance. In this study, system logs from two universities, Dartmouth College and Shanghai Jiao Tong University(SJTU), were mined and analyzed. Every user's log was represented by a user profile. A novel weighted social similarity was proposed to quantify the resemblance of users considering influence of location visits. Based on the similarity, an unsupervised learning method was applied to cluster users. Though environment parameters are different, two universities both form many social groups with Pareto distribution of similarity and exponential distribution of group sizes. These findings are very important to the research of wireless network and social network .展开更多
During the process of landslide, its dynamic mechanism is important to understand and predict these kinds of natural hazard. In this paper, a new method, based on concepts of complex networks, has been proposed to inv...During the process of landslide, its dynamic mechanism is important to understand and predict these kinds of natural hazard. In this paper, a new method, based on concepts of complex networks, has been proposed to investigate the evolution of contact networks in mesoscale during the sliding process of slope. A slope model was established using the discrete element method (DEM), and influences of inter-particle frictional coefficients with four different values on?dynamic landslides were studied. Both macroscopic analysis on slope?landslide?and mesoanalysis on structure evolution of contact networks, including the?average degree, clustering coefficient?and N-cycle, were done during the process?of landslide. The analysis results demonstrate that: 1) with increasing inter-particle?frictional coefficients, the displacement of slope decreases and the stable angle of slope post-failure increases, which is smaller than the peak internal frictional angle;2) the average degree decreases with the increase of inter-particle frictional coefficient. When the displacement at the toe of the slope is smaller,?the average degree there changes more greatly with increasing inter-particle?frictional coefficient;3) during the initial stage of landslide, the clustering coefficient?reduces sharply, which may leads to easily slide of slope. As the landslide?going?on, however, the clustering coefficient?increases denoting increasing stability?with?increasing inter-particle frictional coefficients. When the inter-particle?frictional coefficient is smaller than 0.3, its variation can affect the clustering coefficient?and stable inclination of slope post-failure greatly;and 4) the number of?3-cycle increases, but 4-cycle and 5-cycle decrease with increasing inter-particle frictional coefficients.展开更多
The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distri...The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distribution(i.e., a spectral graph feature) as the network order increases. First, we use deterministic scale-free networks generated by a pseudo treelike model to derive the precise formula of the spectral feature, and then analyze the stability of the spectral feature based on the precise formula. Except for the scale-free feature, the pseudo tree-like model exhibits the hierarchical and small-world structures of complex networks. The stability analysis is useful for the classification of networks with different orders and the similarity analysis of networks that may belong to the same evolving system.展开更多
We propose a weighted clique network evolution model, which expands continuously by the addition of a new clique (maximal complete sub-graph) at. each time step. And the cliques in the network overlap with each othe...We propose a weighted clique network evolution model, which expands continuously by the addition of a new clique (maximal complete sub-graph) at. each time step. And the cliques in the network overlap with each other. The structural expansion of the weighted clique network is combined with the edges' weight and vertices' strengths dynamical evolution. The model is based on a weight-driven dynamics and a weights' enhancement mechanism combining with the network growth. We study the network properties, which include the distribution of vertices' strength and the distribution o~ edges' weight, and find that both the distributions follow the scale-free distribution. At the same time, we also find that the relationship between strength and degree of a vertex are linear correlation during the growth of the network. On the basis of mean-field theory, we study the weighted network model and prove that both vertices' strength and edges' weight of this model follow the scale-free distribution. And we exploit an algorithm to forecast the network dynamics, which can be used to reckon the distributions and the corresponding scaling exponents. Furthermore, we observe that mean-field based theoretic results are consistent with the statistical data of the model, which denotes the theoretical result in this paper is effective.展开更多
The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Inst...The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Instagram. While these platforms offer avenues for self-expression and community support, they concurrently harbor negative impacts, fostering antisocial behaviors like phishing, impersonation, hate speech, cyberbullying, cyberstalking, cyberterrorism, fake news propagation, spamming, and fraud. Notably, individuals also leverage these platforms to connect with authorities and seek aid during disasters. The overarching objective of this research is to address the dual nature of network platforms by proposing innovative methodologies aimed at enhancing their positive aspects and mitigating their negative repercussions. To achieve this, the study introduces a weight learning method grounded in multi-linear attribute ranking. This approach serves to evaluate the significance of attribute combinations across all feature spaces. Additionally, a novel clustering method based on tensors is proposed to elevate the quality of clustering while effectively distinguishing selected features. The methodology incorporates a weighted average similarity matrix and optionally integrates weighted Euclidean distance, contributing to a more nuanced understanding of attribute importance. The analysis of the proposed methods yields significant findings. The weight learning method proves instrumental in discerning the importance of attribute combinations, shedding light on key aspects within feature spaces. Simultaneously, the clustering method based on tensors exhibits improved efficacy in enhancing clustering quality and feature distinction. This not only advances our understanding of attribute importance but also paves the way for more nuanced data analysis methodologies. In conclusion, this research underscores the pivotal role of network platforms in contemporary society, emphasizing their potential for both positive contributions and adverse consequences. The proposed methodologies offer novel approaches to address these dualities, providing a foundation for future research and practical applications. Ultimately, this study contributes to the ongoing discourse on optimizing the utility of network platforms while minimizing their negative impacts.展开更多
The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the info...The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement.展开更多
In Heterogeneous Wireless Sensor Networks, the mobility of the sensor nodes becomes essential in various applications. During node mobility, there are possibilities for the malicious node to become the cluster head or...In Heterogeneous Wireless Sensor Networks, the mobility of the sensor nodes becomes essential in various applications. During node mobility, there are possibilities for the malicious node to become the cluster head or cluster member. This causes the cluster or the whole network to be controlled by the malicious nodes. To offer high level of security, the mobile sensor nodes need to be authenticated. Further, clustering of nodes improves scalability, energy efficient routing and data delivery. In this paper, we propose a cluster based secure dynamic keying technique to authenticate the nodes during mobility. The nodes with high configuration are chosen as cluster heads based on the weight value which is estimated using parameters such as the node degree, average distance, node's average speed, and virtual battery power. The keys are dynamically generated and used for providing security. Even the keys are compromised by the attackers, they are not able to use the previous keys to cheat or disuse the authenticated nodes. In addition, a bidirectional malicious node detection technique is employed which eliminates the malicious node from the network. By simulation, it is proved that the proposed technique provides efficient security with reduced energy consumption during node mobility.展开更多
Multilayer network is a frontier direction of network science research. In this paper, the cluster ring network is extended to a two-layer network model, and the inner structures of the cluster blocks are random, smal...Multilayer network is a frontier direction of network science research. In this paper, the cluster ring network is extended to a two-layer network model, and the inner structures of the cluster blocks are random, small world or scale-free. We study the influence of network scale, the interlayer linking weight and interlayer linking fraction on synchronizability. It is found that the synchronizability of the two-layer cluster ring network decreases with the increase of network size. There is an optimum value of the interlayer linking weight in the two-layer cluster ring network, which makes the synchronizability of the network reach the optimum. When the interlayer linking weight and the interlayer linking fraction are very small, the change of them will affect the synchronizability.展开更多
基金Supported by the National Natural Science Foundation of China (90204012, 60573036) and the Natural Science Foundation of Hebei Province (F2006000177)
文摘We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in a power-law form, which is different from the well-known result in unweighted network case. Simulation results show that the nodes with larger strength are preferential to be infected, but the hierarchical dynamics are not clearly found. The simulation results also show that larger dispersion of weight of networks leads to slower propagating, which indicates that malicious code propagates more quickly in unweighted scale-free networks than in weighted scale-free networks under the same condition. These results show that not only the topology of networks but also the link weights affect the malicious propagating process.
基金National Natural Science Foundation of China under Grant No.10675060
文摘An improved weighted scale-free network, which has two evolution mechanisms: topological growth and strength dynamics, has been introduced. The topology structure of the model will be explored in details in this work. The evolution driven mechanism of Olami-Feder Christensen (OFC) model is added to our model to study the self-organlzed criticality and the dynamical behavior. We also.consider attack mechanism and the study of the model with attack is also investigated in this paper. We tlnd there are differences between the model with attack and without attack.
基金Supported by the National Natural Science Foundation of China under Grant No 10675048the Research Foundation of Education Department of Hubei Province under Grant No Q20121512the Natural Science Foundation of Navy University of Engineering under Grant No 201200000033
文摘By means of the series method, we obtain the exact analytical solution of clustering coefficient in random Apollonian networks [Phys. Rev. E 71 (2005)046141]. Our exact analytical result is identical with the simulation, whereas in the original work, there is a deviation of about 4% between their approximate analytical result and the simulation.
基金Acknowledgements We acknowledge the financial suppor~ from the National Basic Science Program of China Project No. 2006CB705500 and the National Natural Science Foundation of China under the grant Nos. 70471084, 10775071, 10635040, and 60676056. C. P. Zhu thanks the hospitable accommodation of Bao- Wen Li at NUS and Visitors Program of MPIPKS in Dresden, Germany.
文摘Scale-free topology and high clustering coexist in some real networks, and keep invariant for growing sizes of the systems. Previous models could hardly give out size-independent clustering with self- organized mechanism when succeeded in producing power-law degree distributions. Always ignored, some empirical statistic results display flat-head power-law behaviors. We modify our recent coevo- lutionary model to explain such phenomena with the inert property of nodes to retain small portion of unfavorable links in self-organized rewiring process. Flat-head power-law and size-independent clustering are induced as the new characteristics by this modification. In addition, a new scaling relation is found as the result of interplay between node state growth and adaptive variation of connections.
基金Supported by National Natural Science Foundation of China(Grant Nos.10971137and11271256)NationalBasic Research Program of China973Program(Grant No.2006CB805900)the Grant of Science andTechnology Commission of Shanghai Municipality(STCSM No.09XD1402500)
文摘The small-world network, proposed by Watts and Strogatz, has been extensively studied for the past over ten years. In this paper, a generalized smMl-world network is proposed, which extends severM small-world network models. Furthermore, some properties of a special type of generalized small-world network with given expectation of edge numbers have been investigated, such as the degree distribution and the isoperimetric number. These results are used to present a lower and an upper bounds for the clustering coefficient and the diameter of the given edge number expectation generalized small-world network, respectively. In other words, we prove mathematically that the given edge number expectation generalized small-world network possesses large clustering coefficient and small diameter.
基金This work is supported by Basic and Applied Basic Research Foundation of Guangdong Province(No.2020A1515011495)Guangzhou Science and Technology Foundation Project(No.202002030266).
文摘Triadic closure is a simple and fundamental kind of link formulation mechanism in network.Local closure coefficient(LCC),a new network property,is to measure the triadic closure with respect to the fraction of length-2 paths for link prediction.In this paper,a weighted format of LCC(WLCC)is introduced to measure the weighted strength of local triadic structure,and a statistic similari-ty-based link prediction metric is proposed to incorporate the definition of WLCC.To prove the metrics effectiveness and scalability,the WLCC formula-tion was further investigated under weighted local Naive Bayes(WLNB)link prediction framework.Finally,extensive experimental studies was conducted with weighted baseline metrics on various public network datasets.The results demonstrate the merits of the proposed metrics in comparison with the weighted baselines.
基金supported by the National Natural Science Foundation of China under Grant No.10675060
文摘For most networks, the weight of connection is changing with their attachment and inner affinity. By introducing a mixed mechanism of weighted-driven and inner selection, the model exhibits wide range power-law distributions of node strength and edge weight, and the exponent can be adjusted by not only the parameter δ but also the probability q. Furthermore, we investigate the weighted average shortest distance, clustering coefficient, and the correlation of our network. In addition, the weighted assortativity coefficient which characterizes important information of weighted topological networks has been discussed, but the variation of coefficients is much smaller than the former researches.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘In this paper, an energy efficient clustering algorithm based on neighbors (EECABN) for wireless sensor networks is proposed. In the algorithm, an optimized weight of nodes is introduced to determine the priority of clustering procedure. As improvement, the weight is a measurement of energy and degree as usual, and even associates with distance from neighbors, distance to the sink node, and other factors. To prevent the low energy nodes being exhausted with energy, the strong nodes should have more opportunities to act as cluster heads during the clustering procedure. The simulation results show that the algorithm can effectively prolong whole the network lifetime. Especially at the early stage that some nodes in the network begin to die, the process can be postponed by using the algorithm.
基金National Natural Science Foundation of China under Grant Nos.60504019 and 70431002
文摘In order to describe the self-organization of communities in the evolution of weighted networks, we propose a new evolving model for weighted community-structured networks with the preferential mechanisms functioned in different levels according to community sizes and node strengths, respectively. Theoretical analyses and numerical simulations show that our model captures power-law distributions of community sizes, node strengths, and link weights, with tunable exponents of v ≥ 1, γ 〉 2, and α 〉 2, respectively, sharing large clustering coefficients and scaling clustering spectra, and covering the range from disassortative networks to assortative networks. Finally, we apply our new model to the scientific co-authorship networks with both their weighted and unweighted datasets to verify its effectiveness.
基金National Natural Science Foundation of China(No. 60970106)National High Technology Research and Development Program of China( No. 2011AA010500)
文摘With the popularity of wireless networks and the prevalence of personal mobile computing devices, understanding the characteristic of wireless network users is of great significance to the network performance. In this study, system logs from two universities, Dartmouth College and Shanghai Jiao Tong University(SJTU), were mined and analyzed. Every user's log was represented by a user profile. A novel weighted social similarity was proposed to quantify the resemblance of users considering influence of location visits. Based on the similarity, an unsupervised learning method was applied to cluster users. Though environment parameters are different, two universities both form many social groups with Pareto distribution of similarity and exponential distribution of group sizes. These findings are very important to the research of wireless network and social network .
文摘During the process of landslide, its dynamic mechanism is important to understand and predict these kinds of natural hazard. In this paper, a new method, based on concepts of complex networks, has been proposed to investigate the evolution of contact networks in mesoscale during the sliding process of slope. A slope model was established using the discrete element method (DEM), and influences of inter-particle frictional coefficients with four different values on?dynamic landslides were studied. Both macroscopic analysis on slope?landslide?and mesoanalysis on structure evolution of contact networks, including the?average degree, clustering coefficient?and N-cycle, were done during the process?of landslide. The analysis results demonstrate that: 1) with increasing inter-particle?frictional coefficients, the displacement of slope decreases and the stable angle of slope post-failure increases, which is smaller than the peak internal frictional angle;2) the average degree decreases with the increase of inter-particle frictional coefficient. When the displacement at the toe of the slope is smaller,?the average degree there changes more greatly with increasing inter-particle?frictional coefficient;3) during the initial stage of landslide, the clustering coefficient?reduces sharply, which may leads to easily slide of slope. As the landslide?going?on, however, the clustering coefficient?increases denoting increasing stability?with?increasing inter-particle frictional coefficients. When the inter-particle?frictional coefficient is smaller than 0.3, its variation can affect the clustering coefficient?and stable inclination of slope post-failure greatly;and 4) the number of?3-cycle increases, but 4-cycle and 5-cycle decrease with increasing inter-particle frictional coefficients.
基金Supported by National Natural Science Foundation of China (60874063), and Innovation and Scientific Research Foundation of Graduate Student of Heilongjiang Province (YJSCX2012-263HLJ)
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61402485,61303061,and 71201169)
文摘The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distribution(i.e., a spectral graph feature) as the network order increases. First, we use deterministic scale-free networks generated by a pseudo treelike model to derive the precise formula of the spectral feature, and then analyze the stability of the spectral feature based on the precise formula. Except for the scale-free feature, the pseudo tree-like model exhibits the hierarchical and small-world structures of complex networks. The stability analysis is useful for the classification of networks with different orders and the similarity analysis of networks that may belong to the same evolving system.
基金Supported by National Natural Science Foundation of China under Grant Nos. 60504027 and 60874080the Open Project of State Key Lab of Industrial Control Technology under Grant No. ICT1107
文摘We propose a weighted clique network evolution model, which expands continuously by the addition of a new clique (maximal complete sub-graph) at. each time step. And the cliques in the network overlap with each other. The structural expansion of the weighted clique network is combined with the edges' weight and vertices' strengths dynamical evolution. The model is based on a weight-driven dynamics and a weights' enhancement mechanism combining with the network growth. We study the network properties, which include the distribution of vertices' strength and the distribution o~ edges' weight, and find that both the distributions follow the scale-free distribution. At the same time, we also find that the relationship between strength and degree of a vertex are linear correlation during the growth of the network. On the basis of mean-field theory, we study the weighted network model and prove that both vertices' strength and edges' weight of this model follow the scale-free distribution. And we exploit an algorithm to forecast the network dynamics, which can be used to reckon the distributions and the corresponding scaling exponents. Furthermore, we observe that mean-field based theoretic results are consistent with the statistical data of the model, which denotes the theoretical result in this paper is effective.
基金sponsored by the National Natural Science Foundation of P.R.China(Nos.62102194 and 62102196)Six Talent Peaks Project of Jiangsu Province(No.RJFW-111)Postgraduate Research and Practice Innovation Program of Jiangsu Province(Nos.KYCX23_1087 and KYCX22_1027).
文摘The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Instagram. While these platforms offer avenues for self-expression and community support, they concurrently harbor negative impacts, fostering antisocial behaviors like phishing, impersonation, hate speech, cyberbullying, cyberstalking, cyberterrorism, fake news propagation, spamming, and fraud. Notably, individuals also leverage these platforms to connect with authorities and seek aid during disasters. The overarching objective of this research is to address the dual nature of network platforms by proposing innovative methodologies aimed at enhancing their positive aspects and mitigating their negative repercussions. To achieve this, the study introduces a weight learning method grounded in multi-linear attribute ranking. This approach serves to evaluate the significance of attribute combinations across all feature spaces. Additionally, a novel clustering method based on tensors is proposed to elevate the quality of clustering while effectively distinguishing selected features. The methodology incorporates a weighted average similarity matrix and optionally integrates weighted Euclidean distance, contributing to a more nuanced understanding of attribute importance. The analysis of the proposed methods yields significant findings. The weight learning method proves instrumental in discerning the importance of attribute combinations, shedding light on key aspects within feature spaces. Simultaneously, the clustering method based on tensors exhibits improved efficacy in enhancing clustering quality and feature distinction. This not only advances our understanding of attribute importance but also paves the way for more nuanced data analysis methodologies. In conclusion, this research underscores the pivotal role of network platforms in contemporary society, emphasizing their potential for both positive contributions and adverse consequences. The proposed methodologies offer novel approaches to address these dualities, providing a foundation for future research and practical applications. Ultimately, this study contributes to the ongoing discourse on optimizing the utility of network platforms while minimizing their negative impacts.
基金New Brunswick Innovation Foundation(NBIF)for the financial support of the global project.
文摘The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement.
文摘In Heterogeneous Wireless Sensor Networks, the mobility of the sensor nodes becomes essential in various applications. During node mobility, there are possibilities for the malicious node to become the cluster head or cluster member. This causes the cluster or the whole network to be controlled by the malicious nodes. To offer high level of security, the mobile sensor nodes need to be authenticated. Further, clustering of nodes improves scalability, energy efficient routing and data delivery. In this paper, we propose a cluster based secure dynamic keying technique to authenticate the nodes during mobility. The nodes with high configuration are chosen as cluster heads based on the weight value which is estimated using parameters such as the node degree, average distance, node's average speed, and virtual battery power. The keys are dynamically generated and used for providing security. Even the keys are compromised by the attackers, they are not able to use the previous keys to cheat or disuse the authenticated nodes. In addition, a bidirectional malicious node detection technique is employed which eliminates the malicious node from the network. By simulation, it is proved that the proposed technique provides efficient security with reduced energy consumption during node mobility.
文摘Multilayer network is a frontier direction of network science research. In this paper, the cluster ring network is extended to a two-layer network model, and the inner structures of the cluster blocks are random, small world or scale-free. We study the influence of network scale, the interlayer linking weight and interlayer linking fraction on synchronizability. It is found that the synchronizability of the two-layer cluster ring network decreases with the increase of network size. There is an optimum value of the interlayer linking weight in the two-layer cluster ring network, which makes the synchronizability of the network reach the optimum. When the interlayer linking weight and the interlayer linking fraction are very small, the change of them will affect the synchronizability.