A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low freq...A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy.展开更多
To meet the needs in the fundus examination,including outlook widening,pathology tracking,etc.,this paper describes a robust feature-based method for fully-automatic mosaic of the curved human retinal images photograp...To meet the needs in the fundus examination,including outlook widening,pathology tracking,etc.,this paper describes a robust feature-based method for fully-automatic mosaic of the curved human retinal images photographed by a fundus microscope. The kernel of this new algorithm is the scale-,rotation-and illumination-invariant interest point detector & feature descriptor-Scale-Invariant Feature Transform. When matched interest points according to second-nearest-neighbor strategy,the parameters of the model are estimated using the correct matches of the interest points,extracted by a new inlier identification scheme based on Sampson distance from putative sets. In order to preserve image features,bilinear warping and multi-band blending techniques are used to create panoramic retinal images. Experiments show that the proposed method works well with rejection error in 0.3 pixels,even for those cases where the retinal images without discernable vascular structure in contrast to the state-of-the-art algorithms.展开更多
The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for to...The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for today’s complex and changing networks.Recently,machine learning has beenwidely applied to network traffic recognition.Still,high-dimensional features and redundant data in network traffic can lead to slow convergence problems and low identification accuracy of network traffic recognition algorithms.Taking advantage of the faster optimizationseeking capability of the jumping spider optimization algorithm(JSOA),this paper proposes a jumping spider optimization algorithmthat incorporates the harris hawk optimization(HHO)and small hole imaging(HHJSOA).We use it in network traffic identification feature selection.First,the method incorporates the HHO escape energy factor and the hard siege strategy to forma newsearch strategy for HHJSOA.This location update strategy enhances the search range of the optimal solution of HHJSOA.We use small hole imaging to update the inferior individual.Next,the feature selection problem is coded to propose a jumping spiders individual coding scheme.Multiple iterations of the HHJSOA algorithmfind the optimal individual used as the selected feature for KNN classification.Finally,we validate the classification accuracy and performance of the HHJSOA algorithm using the UNSW-NB15 dataset and KDD99 dataset.Experimental results show that compared with other algorithms for the UNSW-NB15 dataset,the improvement is at least 0.0705,0.00147,and 1 on the accuracy,fitness value,and the number of features.In addition,compared with other feature selectionmethods for the same datasets,the proposed algorithmhas faster convergence,better merit-seeking,and robustness.Therefore,HHJSOAcan improve the classification accuracy and solve the problem that the network traffic recognition algorithm needs to be faster to converge and easily fall into local optimum due to high-dimensional features.展开更多
目的针对第2代数字水印技术,提出一种基于Harris特征点和DWT-SVD的图像盲水印算法。方法提取归一化图像的Harris特征点;选取部分稳定特征点来确定要嵌入水印的特征区域;将特征区域作一次小波分解得到的低频子带,对低频子带进行分块,并...目的针对第2代数字水印技术,提出一种基于Harris特征点和DWT-SVD的图像盲水印算法。方法提取归一化图像的Harris特征点;选取部分稳定特征点来确定要嵌入水印的特征区域;将特征区域作一次小波分解得到的低频子带,对低频子带进行分块,并对每一块进行奇异值分解,通过对每块中最大奇异值进行加权的方法来嵌入水印信息。结果 PSNR值均大于45 d B,NC值接近于1,说明该算法具有可行性。结论该算法对剪切攻击具有很好的鲁棒性,同时该算法也能很好地抵抗噪声、中值滤波攻击、提高亮度攻击、降低亮度攻击、基本图像处理操作的攻击。展开更多
基金supported by the National Natural Science Foundation of China (6117212711071002)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (20113401110006)the Innovative Research Team of 211 Project in Anhui University (KJTD007A)
文摘A new spectral matching algorithm is proposed by us- ing nonsubsampled contourlet transform and scale-invariant fea- ture transform. The nonsubsampled contourlet transform is used to decompose an image into a low frequency image and several high frequency images, and the scale-invariant feature transform is employed to extract feature points from the low frequency im- age. A proximity matrix is constructed for the feature points of two related images. By singular value decomposition of the proximity matrix, a matching matrix (or matching result) reflecting the match- ing degree among feature points is obtained. Experimental results indicate that the proposed algorithm can reduce time complexity and possess a higher accuracy.
基金Program for NewCentury Excellent Talents in UniversityGrant number:50051+1 种基金The Key Project for Technology Research of Ministry Education of ChinaCrant number:106030
文摘To meet the needs in the fundus examination,including outlook widening,pathology tracking,etc.,this paper describes a robust feature-based method for fully-automatic mosaic of the curved human retinal images photographed by a fundus microscope. The kernel of this new algorithm is the scale-,rotation-and illumination-invariant interest point detector & feature descriptor-Scale-Invariant Feature Transform. When matched interest points according to second-nearest-neighbor strategy,the parameters of the model are estimated using the correct matches of the interest points,extracted by a new inlier identification scheme based on Sampson distance from putative sets. In order to preserve image features,bilinear warping and multi-band blending techniques are used to create panoramic retinal images. Experiments show that the proposed method works well with rejection error in 0.3 pixels,even for those cases where the retinal images without discernable vascular structure in contrast to the state-of-the-art algorithms.
基金funded by the National Natural Science Foundation of China under Grant No.61602162.
文摘The massive influx of traffic on the Internet has made the composition of web traffic increasingly complex.Traditional port-based or protocol-based network traffic identification methods are no longer suitable for today’s complex and changing networks.Recently,machine learning has beenwidely applied to network traffic recognition.Still,high-dimensional features and redundant data in network traffic can lead to slow convergence problems and low identification accuracy of network traffic recognition algorithms.Taking advantage of the faster optimizationseeking capability of the jumping spider optimization algorithm(JSOA),this paper proposes a jumping spider optimization algorithmthat incorporates the harris hawk optimization(HHO)and small hole imaging(HHJSOA).We use it in network traffic identification feature selection.First,the method incorporates the HHO escape energy factor and the hard siege strategy to forma newsearch strategy for HHJSOA.This location update strategy enhances the search range of the optimal solution of HHJSOA.We use small hole imaging to update the inferior individual.Next,the feature selection problem is coded to propose a jumping spiders individual coding scheme.Multiple iterations of the HHJSOA algorithmfind the optimal individual used as the selected feature for KNN classification.Finally,we validate the classification accuracy and performance of the HHJSOA algorithm using the UNSW-NB15 dataset and KDD99 dataset.Experimental results show that compared with other algorithms for the UNSW-NB15 dataset,the improvement is at least 0.0705,0.00147,and 1 on the accuracy,fitness value,and the number of features.In addition,compared with other feature selectionmethods for the same datasets,the proposed algorithmhas faster convergence,better merit-seeking,and robustness.Therefore,HHJSOAcan improve the classification accuracy and solve the problem that the network traffic recognition algorithm needs to be faster to converge and easily fall into local optimum due to high-dimensional features.
文摘目的针对第2代数字水印技术,提出一种基于Harris特征点和DWT-SVD的图像盲水印算法。方法提取归一化图像的Harris特征点;选取部分稳定特征点来确定要嵌入水印的特征区域;将特征区域作一次小波分解得到的低频子带,对低频子带进行分块,并对每一块进行奇异值分解,通过对每块中最大奇异值进行加权的方法来嵌入水印信息。结果 PSNR值均大于45 d B,NC值接近于1,说明该算法具有可行性。结论该算法对剪切攻击具有很好的鲁棒性,同时该算法也能很好地抵抗噪声、中值滤波攻击、提高亮度攻击、降低亮度攻击、基本图像处理操作的攻击。