The third-order nonlinear optical properties of two dmit organometallic complexes, [(CH3)4N] [Au(C3S5)2] (MeAu) and [(CH3)4N][Ni(C3S5)2] (Me Ni) in acetone solutions, were characterized us- ing a short pulse Z-scan te...The third-order nonlinear optical properties of two dmit organometallic complexes, [(CH3)4N] [Au(C3S5)2] (MeAu) and [(CH3)4N][Ni(C3S5)2] (Me Ni) in acetone solutions, were characterized us- ing a short pulse Z-scan technique at 1064 nm wavelength. Self-defocusing effects were found in both samples and stronger saturable absorp-tion was observed in MeNi solution comparing with that of MeAu. The origins were analyzed for the differences between the results. Two figures of merit W and T were also calculated to evalu-ate the suitability of two materials for all-optical integrated devices. The results of W=22.84 and T≈0 of MeAu make it an excellent candidate for the all-optical applications.展开更多
The irradiance of an elliptic Gaussian beam that is high enough to excite high-order nonlinear refraction effect is used to calculate the normalized on-axis transmittance function in the z-scan technique by introducin...The irradiance of an elliptic Gaussian beam that is high enough to excite high-order nonlinear refraction effect is used to calculate the normalized on-axis transmittance function in the z-scan technique by introducing complex beam parameters which make the calculation simpler. The transmittance formula is applied to the first-, first two-, and first three-order nonlinearities. Numerical evaluation shows that the symmetry no longer holds when using an elliptic Gaussian beam instead of a circular Gaussian beam. A distortion is observed in the central part of the curve, which decreases as ellipticity increases. Moreover, the variation of the normalized peak-valley difference decreases as ellipticity decreases.展开更多
As a representative of small aromatic molecules, triphenylene(TP) has markedly high carrier mobility and is an ideal precursor for building graphene nanostructures. We mainly investigated the adsorption behavior of TP...As a representative of small aromatic molecules, triphenylene(TP) has markedly high carrier mobility and is an ideal precursor for building graphene nanostructures. We mainly investigated the adsorption behavior of TP molecules on Ru(0001) by using scanning tunneling microscopy(STM). In submonolayer regime, TP molecules are randomly dispersed on Ru(0001) and the TP overlayer can be thoroughly dehydrogenated and converted into graphene islands at 700 K. Due to weak interaction between TP molecules and graphene, the grooves formed among graphene islands have confinement effect on TP molecules. TP adopts a flat-lying adsorption mode and has two adsorption configurations with the 3-fold molecular axis aligned almost parallel or antiparallel to the ■ direction of the substrate. At TP coverages of 0.6 monolayer(ML)and 0.8 ML, the orientational distributions of the two adsorption configurations are equal. At about 1.0 ML, we find the coexistence of locally ordered and disordered phases. The ordered phase includes two sets of different superstructures with the symmetries of ■R23.41° and p(4 × 4), respectively. The adsorption behavior of TP on Ru(0001) can be attributed to the delicate balance between molecule–substrate and molecule–molecule interactions.展开更多
A single scan has been performed in Differential Scanning Calorimetry (DSC) at a heating rate of 15oC/min under non-isothermal conditions to investigate the crystallization kinetics of glassy Se90Sb10-xAgx alloys (whe...A single scan has been performed in Differential Scanning Calorimetry (DSC) at a heating rate of 15oC/min under non-isothermal conditions to investigate the crystallization kinetics of glassy Se90Sb10-xAgx alloys (where x = 2, 4, 6, 8). For this purpose, Handerson’s theory based on non-isothermal method for thermal analysis of single-scan DSC data has been used. The activation energy of crystallization and order parameter has been determined and composition dependence of these parameters has been discussed.展开更多
The third-order optical nonlinearities of [(CH3)4N]Au(dmit)2 (dmit = 4,5-dithiolate-1,3-dithiole-2-thione) at 532 nm and 1064 nm are investigated using the Z-scan technique with pulses of picoseconds duration. T...The third-order optical nonlinearities of [(CH3)4N]Au(dmit)2 (dmit = 4,5-dithiolate-1,3-dithiole-2-thione) at 532 nm and 1064 nm are investigated using the Z-scan technique with pulses of picoseconds duration. The Z-scan spectra reveal a strong nonlinear absorption (reverse saturable absorption) and a negative nonlinear refraction at 532 nm. No nonlinear absorption is observed at 1064 nm. The molecular second-order hyperpolarizability γ for the [(CH3)4N]Au(dmit)2 molecule at 532nm is estimated to be as high as (2.1 ±0.1) × 10^-31 esu, which is nearly three times larger than that at 1064 nm. The mechanism responsible for the difference between the results is analysed. Nonlinear transmission measurements suggest that this material has potential applications in optical limiting.展开更多
An error correction technique for the micro-scanning instrument of the optical micro-scanning thermal microscope imaging system is proposed. The technique is based on micro-scanning technology combined with the propos...An error correction technique for the micro-scanning instrument of the optical micro-scanning thermal microscope imaging system is proposed. The technique is based on micro-scanning technology combined with the proposed second-order oversampling reconstruction algorithm and local gradient image reconstruction algorithm. In this paper, we describe the local gradient image reconstruction model, the error correction technique, down-sampling model and the error correction principle. In this paper, we use a Lena original image and four low-resolution images obtained from the standard half-pixel displacement to simulate and verify the effectiveness of the proposed technique. In order to verify the effectiveness of the proposed technique, two groups of low-resolution thermal microscope images are collected by the actual thermal microscope imaging system for experimental study. Simulations and experiments show that the proposed technique can reduce the optical micro-scanning errors, improve the imaging effect of the system and improve the system's spatial resolution. It can be applied to other electro-optical imaging systems to improve their resolution.展开更多
A new alkali metallo-organic single crystal of Lithium Sodium Acid Phthlate (LiNaP) complex has been synthesized from aqueous solution in the equimolar ratio 3:1:2. Transparent and bulk single crystals of dimension 9 ...A new alkali metallo-organic single crystal of Lithium Sodium Acid Phthlate (LiNaP) complex has been synthesized from aqueous solution in the equimolar ratio 3:1:2. Transparent and bulk single crystals of dimension 9 × 4 ×2 mm3 have been grown from the conventional slow-cooling technique. The crystal structure of the compound has been solved from single crystal X-ray diffraction. The compound 2[C8H4O3]4-Li3+Na+ crystallizes in triclinic system with a space group of Pī having cell dimensions a = 7.5451(2) ? b = 9.8422(3) ? c = 25.2209(7) ? α = 80.299(2);β = 89.204(2);γ = 82.7770(10). FTIR measurement was carried out fo? LiNaP to study the vibrational structure of the compound. The various functional groups present in the molecule and the role of H-bonds in stabilizing the crystal structure of the compound have been explained. Optical absorption properties were studied for the grown crystal using UV-Vis-NIR spectrum. Thermal measurements were carried out for LiNaP to determine the thermal strength as well as to ascertain the hydrated nature of the crystal. Third order nonliner optical studies have also studied by Z-scan techniques. Nonlinear absorption and nonlinear refractive index were found out and the third order bulk susceptibility of compound was also estimated. The results of all studies have been discussed in detail.展开更多
The organic imine and their metal complexes were synthesized and characterized by IR, UV and NMR. The third order non linear optical properties of the compounds were investigated. The measurements of second hyperpolar...The organic imine and their metal complexes were synthesized and characterized by IR, UV and NMR. The third order non linear optical properties of the compounds were investigated. The measurements of second hyperpolarizabilites were performed using single beam Z-scan technique with 8 ns laser pulses. Ligand and its Copper, Zinc and Nickel complexes show good third order non linearity whereas Manganese complex did not show any activity.展开更多
文摘The third-order nonlinear optical properties of two dmit organometallic complexes, [(CH3)4N] [Au(C3S5)2] (MeAu) and [(CH3)4N][Ni(C3S5)2] (Me Ni) in acetone solutions, were characterized us- ing a short pulse Z-scan technique at 1064 nm wavelength. Self-defocusing effects were found in both samples and stronger saturable absorp-tion was observed in MeNi solution comparing with that of MeAu. The origins were analyzed for the differences between the results. Two figures of merit W and T were also calculated to evalu-ate the suitability of two materials for all-optical integrated devices. The results of W=22.84 and T≈0 of MeAu make it an excellent candidate for the all-optical applications.
基金Project supported by the National Natural Science Foundation of China (Grant No.10574011)
文摘The irradiance of an elliptic Gaussian beam that is high enough to excite high-order nonlinear refraction effect is used to calculate the normalized on-axis transmittance function in the z-scan technique by introducing complex beam parameters which make the calculation simpler. The transmittance formula is applied to the first-, first two-, and first three-order nonlinearities. Numerical evaluation shows that the symmetry no longer holds when using an elliptic Gaussian beam instead of a circular Gaussian beam. A distortion is observed in the central part of the curve, which decreases as ellipticity increases. Moreover, the variation of the normalized peak-valley difference decreases as ellipticity decreases.
文摘加权分数傅里叶变换(Weighted fractional Fourier transform,WFRFT)技术可以极大地改变信号的特性,使信号的统计特性多样化,从而有效地保障通信信息安全。为解决单参数WFRFT通信抗扫描能力不足的问题,以单参数WFRFT为切入点,深入研究单参数分数域的形成机理,分析其潜在的微观特征和暗特征,从而提出了一种基于跳转向量的隐性WFRFT通信方法(Implicit WFRFT communication method of jump vector,IWVJ)。利用调制阶数与星座图的关系,建立了跳变矩阵和跳变向量,并以此制定了控制规则。此外,通过跳变向量控制获得动态调制阶数,从而达到安全通信的目的。仿真结果表明,IWVJ方法对授权接收机具有较高的反变换解调相似度和较低的误码率,相比于具有普适扫描能力的非授权接收机性能更优。同时对解调阶数误差、基础调制阶数和跳转频率等参数的设置给出了适用的建议,使IWVJ方法能够更好地应用于通信系统,为具有抗干扰、抗截获和抗欺骗能力的保密通信提供技术依据。
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0503100)the National Natural Science Foundation of China(Grant No.11790313)
文摘As a representative of small aromatic molecules, triphenylene(TP) has markedly high carrier mobility and is an ideal precursor for building graphene nanostructures. We mainly investigated the adsorption behavior of TP molecules on Ru(0001) by using scanning tunneling microscopy(STM). In submonolayer regime, TP molecules are randomly dispersed on Ru(0001) and the TP overlayer can be thoroughly dehydrogenated and converted into graphene islands at 700 K. Due to weak interaction between TP molecules and graphene, the grooves formed among graphene islands have confinement effect on TP molecules. TP adopts a flat-lying adsorption mode and has two adsorption configurations with the 3-fold molecular axis aligned almost parallel or antiparallel to the ■ direction of the substrate. At TP coverages of 0.6 monolayer(ML)and 0.8 ML, the orientational distributions of the two adsorption configurations are equal. At about 1.0 ML, we find the coexistence of locally ordered and disordered phases. The ordered phase includes two sets of different superstructures with the symmetries of ■R23.41° and p(4 × 4), respectively. The adsorption behavior of TP on Ru(0001) can be attributed to the delicate balance between molecule–substrate and molecule–molecule interactions.
文摘A single scan has been performed in Differential Scanning Calorimetry (DSC) at a heating rate of 15oC/min under non-isothermal conditions to investigate the crystallization kinetics of glassy Se90Sb10-xAgx alloys (where x = 2, 4, 6, 8). For this purpose, Handerson’s theory based on non-isothermal method for thermal analysis of single-scan DSC data has been used. The activation energy of crystallization and order parameter has been determined and composition dependence of these parameters has been discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60377016 and 60476020) and the National High Technology Development Program of China (Grant No 2002AA313070).
文摘The third-order optical nonlinearities of [(CH3)4N]Au(dmit)2 (dmit = 4,5-dithiolate-1,3-dithiole-2-thione) at 532 nm and 1064 nm are investigated using the Z-scan technique with pulses of picoseconds duration. The Z-scan spectra reveal a strong nonlinear absorption (reverse saturable absorption) and a negative nonlinear refraction at 532 nm. No nonlinear absorption is observed at 1064 nm. The molecular second-order hyperpolarizability γ for the [(CH3)4N]Au(dmit)2 molecule at 532nm is estimated to be as high as (2.1 ±0.1) × 10^-31 esu, which is nearly three times larger than that at 1064 nm. The mechanism responsible for the difference between the results is analysed. Nonlinear transmission measurements suggest that this material has potential applications in optical limiting.
基金Supported by Postgraduate Innovation Funding Project of Hebei Province(CXZZSS2019050)the Qinhuangdao City Key Research and Development Program Science and Technology Support Project(201801B010)
文摘An error correction technique for the micro-scanning instrument of the optical micro-scanning thermal microscope imaging system is proposed. The technique is based on micro-scanning technology combined with the proposed second-order oversampling reconstruction algorithm and local gradient image reconstruction algorithm. In this paper, we describe the local gradient image reconstruction model, the error correction technique, down-sampling model and the error correction principle. In this paper, we use a Lena original image and four low-resolution images obtained from the standard half-pixel displacement to simulate and verify the effectiveness of the proposed technique. In order to verify the effectiveness of the proposed technique, two groups of low-resolution thermal microscope images are collected by the actual thermal microscope imaging system for experimental study. Simulations and experiments show that the proposed technique can reduce the optical micro-scanning errors, improve the imaging effect of the system and improve the system's spatial resolution. It can be applied to other electro-optical imaging systems to improve their resolution.
文摘A new alkali metallo-organic single crystal of Lithium Sodium Acid Phthlate (LiNaP) complex has been synthesized from aqueous solution in the equimolar ratio 3:1:2. Transparent and bulk single crystals of dimension 9 × 4 ×2 mm3 have been grown from the conventional slow-cooling technique. The crystal structure of the compound has been solved from single crystal X-ray diffraction. The compound 2[C8H4O3]4-Li3+Na+ crystallizes in triclinic system with a space group of Pī having cell dimensions a = 7.5451(2) ? b = 9.8422(3) ? c = 25.2209(7) ? α = 80.299(2);β = 89.204(2);γ = 82.7770(10). FTIR measurement was carried out fo? LiNaP to study the vibrational structure of the compound. The various functional groups present in the molecule and the role of H-bonds in stabilizing the crystal structure of the compound have been explained. Optical absorption properties were studied for the grown crystal using UV-Vis-NIR spectrum. Thermal measurements were carried out for LiNaP to determine the thermal strength as well as to ascertain the hydrated nature of the crystal. Third order nonliner optical studies have also studied by Z-scan techniques. Nonlinear absorption and nonlinear refractive index were found out and the third order bulk susceptibility of compound was also estimated. The results of all studies have been discussed in detail.
文摘The organic imine and their metal complexes were synthesized and characterized by IR, UV and NMR. The third order non linear optical properties of the compounds were investigated. The measurements of second hyperpolarizabilites were performed using single beam Z-scan technique with 8 ns laser pulses. Ligand and its Copper, Zinc and Nickel complexes show good third order non linearity whereas Manganese complex did not show any activity.