Phase separation rate is a critical character in determining the usefulness of a solvent extraction system in hydrometallurgy. A survey of the synergistic mixture containing dinonylnaphthalene sulfonic acid (HDNNS) an...Phase separation rate is a critical character in determining the usefulness of a solvent extraction system in hydrometallurgy. A survey of the synergistic mixture containing dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexly 4-pyridinecarboxylate ester (4PC) for the extraction of cobalt from acidic single metal sulfate solution was carried out to suggest how the physicochemical properties and the morphology of the reverse micelles in the loaded organic phase affect the phase separation. The results show that effective parameters affecting the phase separation are the viscosity and the excess water uptake of the loaded organic phase. It is obvious that the specific settling rate (SSR) decreases with the apparent increase of these two parameters. The measurement of small angle X-ray scattering (SAXS) proves that the morphology of the reversed micelles in the loaded organic phase changes evidently with the change of the specific settling rate (SSR).展开更多
An experimental investigation was presented on the separation of Cu(Ⅱ), Zn(Ⅱ), and Cd(Ⅱ) from a rich sulfate leachate of zinc slag by solvent extraction. The results of orthogonal experiments indicate that LI...An experimental investigation was presented on the separation of Cu(Ⅱ), Zn(Ⅱ), and Cd(Ⅱ) from a rich sulfate leachate of zinc slag by solvent extraction. The results of orthogonal experiments indicate that LIX 984N is highly selective and very efficient in the extraction of Cu(Ⅱ), and the analysis of variance indicates that the sequence of parameters according to their influence on the separation efficiency is phase ratio 〉 LIX 984N concentration 〉 pH value 〉 extraction time. The optimal condition for copper extraction is obtained as 25% of LIX 984N concentration, 7 rain of extraction time, 3:2 of phase ratio O/A, and pH = 1.7. The separation of Zn(Ⅱ) and Cd(Ⅱ) was performed after the copper extraction from the raffinate. Comparative analysis of the separation with di-2-ethylhexyl phosphoric acid (D2EHPA), D2EHPA-tributyl- phosophate (TBP) synergistic extracting system, and 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester (HEHEHP) was made at pH = 2.0. It is demonstrated that the extraction efficiency with D2EHPA is improved after being saponified by sodium hydroxide, and D2EHPA-TBP synergistic extracting, as well as HEHEHP, has a superior selectivity to Zn(Ⅱ) over Cd(Ⅱ).展开更多
The feasibility of simultaneous water recovery,salt separation and effective descaling of hypersaline brine was investigated by diisopropylamine(DIPA)-based directional solvent extraction(DSE),using diluted/concentrat...The feasibility of simultaneous water recovery,salt separation and effective descaling of hypersaline brine was investigated by diisopropylamine(DIPA)-based directional solvent extraction(DSE),using diluted/concentrated seawater with initial saline concentration range of 12–237 g/L at extraction temperatures of 5 and 15℃,respectively.The water recovery shows an obvious boundary at saline concentration of 115 g/L under dual effect of specific water extraction efficiency and extraction cycles.High Cl^(–) ion concentration in product water is in sharp contrast to the nearly complete removal of SO_(4)^(2–)and hardness ions,indicating that DIPA-based DSE process indeed achieved efficient separation and purification of Cl^(–) ion from hypersaline brines.Especially,the radical precipitation of Mg^(2+)and Ca^(2+)ions in form of Mg(OH)_(2)and CaCO_(3)demonstrates effective descaling potential,although it leads to more DIPA residues in dewatered raffinate than product water.Moreover,an exponential correlation between the Cl^(–) removal efficiency and specific water extraction efficiency further reveals the intrinsic relationship of water extraction process and transfer of Cl^(–) ion to the product water.Overall,the study provides a novel approach for integrating the water recovery and separation of Cl^(–) ion from ultra-high-salinity brines with radical precipitation of Mg^(2+)and Ca^(2+) ions in one step.展开更多
The separation of cobalt and nickel in the ammoniacal sulfate solution by non equilibrium solvent extraction with a phosphate (P303) as extractant was studied. In the experiment, the effects of equilibrium pH value in...The separation of cobalt and nickel in the ammoniacal sulfate solution by non equilibrium solvent extraction with a phosphate (P303) as extractant was studied. In the experiment, the effects of equilibrium pH value in aqueous phase, contact time of the two phases, the air blowing time for feed liquor in the open beaker on percentage extraction of cobalt and nickel and percentage reextraction of nickel from the loaded organic phase with dilute H 2SO 4. etc were studied. The results showed that: Co(Ⅱ) can be oxidized to Co(Ⅲ) ammino complex by adding (NH 4) 2S 2O 8 or blowing air to the aqueous phase, and Co(Ⅲ) ammino complex is a kind of kinetically inert complex. Its extractive speed is very slow, while the nickel′s is much faster than that of cobalt. By controlling the contact time of the two phases, nickel can be separated from cobalt by non equilibrium solvent extraction. Then nickel was reextracted from the loaded organic phase with dilute H 2SO 4.展开更多
Pre-dispersed solvent extraction (PDSE) was used to extract quercentin from its diluted solution. The influences of temperature, phase volume ratio (PVR), concentration of sodium Dodecyl benzene sulphonate and pH valu...Pre-dispersed solvent extraction (PDSE) was used to extract quercentin from its diluted solution. The influences of temperature, phase volume ratio (PVR), concentration of sodium Dodecyl benzene sulphonate and pH value etc. on the extraction efficiency were examined. It is found that, compared with traditional extraction techniques under the same condition, a higher extraction productivity can be obtained by PDSE. The stability of colloidal liquid aphrons plays an important role in this process. In a certain scope, the extraction efficiency increases with PVR. Excessive amount of solvent is not much helpful. A new analytical method by using ultraviolet spectrometer to determine the concentration of quercentin is established.展开更多
The extraction of the trivalent middle rare earths from chloride media by kerosene solutions of 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester as an extractant was studied. The separation factors between the elem...The extraction of the trivalent middle rare earths from chloride media by kerosene solutions of 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester as an extractant was studied. The separation factors between the elements using solution simulating wastes from NiMH spent batteries have been evaluated: the order of the extractive ability of extractant can be confirmed in Tb>Gd>Eu>Sm.展开更多
The preparation of nuclear-grade zirconium and hafnium is very important for nuclear power. The separation of hafnium from zirconium in a hydrochloric acid solution by solvent extraction was investigated with di(2-eth...The preparation of nuclear-grade zirconium and hafnium is very important for nuclear power. The separation of hafnium from zirconium in a hydrochloric acid solution by solvent extraction was investigated with di(2-ethylhexyl)phosphoric acid(D2 EHPA). The effects of hydrochloric acid concentration, extractant concentration,diluents, and temperature on the distribution coefficient of hafnium and zirconium were studied. The species extracted were ZrOA_2·2 HA and HfOA_2-2 HA. In this process, the separation factors varied with different diluents and followed the order octane > hexane > toluene > chloroform.A high separation factor value of 4.16 was obtained under the conditions of a solution containing 0.05 mol/L HCl and0.01 mol/L D2 EHPA for the separation of hafnium from zirconium. The extraction reaction was endothermic.展开更多
Functionalized ionic liquids(FILs)as extractants were employed for the separation of tungsten and molybdenum from a sulfate solution for the first time.The effects of initial pH,extractant concentration,metal concentr...Functionalized ionic liquids(FILs)as extractants were employed for the separation of tungsten and molybdenum from a sulfate solution for the first time.The effects of initial pH,extractant concentration,metal concentrations in the feed were comprehensively investigated.The results showed that tricaprylmethylammonium bis(2,4,4-trimethylpentyl)phosphinate([A336][Cyanex272])could selectively extract W over Mo at an initial pH value of 5.5;the best separation factorβ_(W/Mo) of 25.61 was obtained for a solution with low metal concentrations(WO3:2.49 g/L,Mo:1.04 g/L).The[A336][Cyanex272]system performed effectively for solutions of different W/Mo molar ratios and different metal ion concentrations in the feed.The chemical reaction between[A336][Cyanex272]and W followed the ion association mechanism,which was further proved by the Fourier-transform infrared(FTIR)spectra of loaded[A336][Cyanex272]and the free extractant.The stripping experiments indicated that 95.48%W and 100.00%Mo were stripped using a 0.20 mol/L sodium hydroxide solution.Finally,the selective extractions of W and Mo from two synthetic solutions of different high metal concentrations were obtained;the separation factorβW/Mo reached 23.24 and 17.59 for the first and second solutions,respectively.The results suggest the feasibility of[A336][Cyanex272]as an extractant for the separation of tungsten and molybdenum.展开更多
An novel method on preparation of precursor solution for solvent separation of molybdenum (Mo) and tungsten (W) by hydrogen peroxide (H2O2)-complexation from the ammonium tungstate solution containing high Mo wa...An novel method on preparation of precursor solution for solvent separation of molybdenum (Mo) and tungsten (W) by hydrogen peroxide (H2O2)-complexation from the ammonium tungstate solution containing high Mo was studied. The precursor solution was obtained via evaporation deamination and H202-complex transformation processes. Then it was extracted with a mixture extractant of tri-alkyl phosphine oxide (TRPO) and tributyl phosphate (TBP) to separate Mo and W. The results indicated that the evaporation deamination complex method reduced the acid consumption by more than 90% in comparison with the traditional directly acid regulation complex method. The transformation rates of W and Mo were higher than 95% and the decomposition rate of H202 was less than 15% at a 1.8-1.9 times H202 dosage, 45-50 ℃, initial pH of 1.80-1.90, and transformation volume ratio of 100% for 60 min in the H2O2-complexation transformation process. The minimum extraction rate of W was 2%, the maximum extraction rate of Mo was 82.6% and the highest separation coefficient was 76.7 in a single-stage extraction.展开更多
This work investigated the separation of potassium from sodium in alkaline solution using substituted phenol-based extractants.Superior potassium extraction was achieved with 4-tert-butyl-2-(α-methylbenzyl)phenol(t-B...This work investigated the separation of potassium from sodium in alkaline solution using substituted phenol-based extractants.Superior potassium extraction was achieved with 4-tert-butyl-2-(α-methylbenzyl)phenol(t-BAMBP)than 4-sec-butyl-2-(α-methylbenzyl)phenol(BAMBP).The optimum conditions for the extraction were 1 mol/L t-BAMBP,3:1 volumetric phase ratio(O/A),and two extraction stages.After cross-current extraction,the extraction ratio of potassium reached 90.8%.After scrubbing with deionised water at phase ratio of 4:1 and scrubbing stage of 4,a sodium scrubbing efficiency of 88.2%was obtained.After stripping using 1 mol/L H_(2)SO_(4) at phase ratio of 3:1,the stripping efficiency of potassium reached 94.2%.The potassium/sodium(K/Na)concentration ratio increased 14.3 times from 0.15 in the feed solution to 2.3 in the stripping solution.The efficient separation of potassium from sodium in alkaline solution was achieved via solvent extraction with t-BAMBP.展开更多
Extractive distillation(ED) is one of the most promising approaches for the separation of the azeotropic or closeboiling mixtures in the chemical industry. The purpose of this paper is to provide a broad overview of t...Extractive distillation(ED) is one of the most promising approaches for the separation of the azeotropic or closeboiling mixtures in the chemical industry. The purpose of this paper is to provide a broad overview of the recent development of key aspects in the ED process involving conceptual design, solvent selection, and separation strategies. To obtain the minimum entrainer feed flow rate and reflux ratio for the ED process, the conceptual design of azeotropic mixture separation based on a topological analysis via thermodynamic feasibility insights involving residue curve maps, univolatility lines, and unidistribution curves is presented. The method is applicable to arbitrary multicomponent mixtures and allows direct screening of design alternatives. The determination of a suitable solvent is one of the key steps to ensure an effective and economical ED process. Candidate entrainers can be obtained from heuristics or literature studies while computer aided molecular design(CAMD) has superiority in efficiency and reliability. To achieve optimized extractive distillation systems, a brief review of evaluation method for both entrainer design and selection through CAMD is presented. Extractive distillation can be operated either in continuous extractive distillation(CED) or batch extractive distillation(BED), and both modes have been well-studied depending on the advantages in flexibility and low capital costs. To improve the energy efficiency, several configurations and technological alternatives can be used for both CED and BED depending on strategies and main azeotropic feeds. The challenge and chance of the further ED development involving screening the best potential solvents and exploring the energy-intensive separation strategies are discussed aiming at promoting the industrial application of this environmentally friendly separation technique.展开更多
A method is proposed for the extraction and separation of trivalent gallium,indium and thallium from their corresponding aqueous solutions at 65 deg C with 2,6-bis-(1'-phenyl-3'-methyl-5'-oxopyrazole-4'...A method is proposed for the extraction and separation of trivalent gallium,indium and thallium from their corresponding aqueous solutions at 65 deg C with 2,6-bis-(1'-phenyl-3'-methyl-5'-oxopyrazole-4') pyridineacyl (H_2PMBPP or H_2A) using molten paraffinwax as a diluent. The values of pH_(1/2) for extraction of gallium, indium and thallium are2.62,4.32 and 4.93, respectively. Gallium can he extracted by H_2PMBPP at a lower acid medium. Theeffect of solvent and the composition of the extracted species are reported. And the thermodynamicdata of the extraction are also obtained.展开更多
A significant development in the theory of countercurrent extraction will be presented in this article. New expressions of the term in countercurrent extraction process analysis, “Adjacent Stage Impurity Ratio” (ASI...A significant development in the theory of countercurrent extraction will be presented in this article. New expressions of the term in countercurrent extraction process analysis, “Adjacent Stage Impurity Ratio” (ASIR), are deduced. Furthermore, based on the term together with mass balance and extraction equilibrium, the conditions where a given countercurrent extraction separation operation can have minimum amounts of both extracting solvent and scrubbing agent solution can be estimated, and the equations of the two minimum amounts can be deduced. It was found that the equations for a two-component separation using a single aqueous or organic feed are exactly the same as they appeared in the theory initially established in 1970s. Unlike its earlier version, the present derivation does not involve feed-stage-composition hypothesis, and also has the advantage of dealing with a double-feed system where both aqueous and organic feeds are simultaneously employed whereas the earlier theory can only analyze a separation using a single aqueous or organic feed.展开更多
The extraction of Eu^(3+)from chloride medium using bifunctional ionic liquid extractants(Bif-ILEs)tri-n-octylmethyl ammonium bis(2-ethyl hexyl)phosphate([A336][D2EHP])and trihexyltetradecyl phosphonium bis(2-ethylhex...The extraction of Eu^(3+)from chloride medium using bifunctional ionic liquid extractants(Bif-ILEs)tri-n-octylmethyl ammonium bis(2-ethyl hexyl)phosphate([A336][D2EHP])and trihexyltetradecyl phosphonium bis(2-ethylhexyl)phosphate([P_(66614)][D2EHP])in kerosene was studied to develop environmentally friendly extraction process.The extraction behavior of Eu^(3+)was examined by varying key process parameters.The extraction behavior indicates that ammonium-based ionic liquid[A336][D2EHP]shows better extraction efficiency of Eu^(3+)than that of phosphonium-based ionic liquid[P_(66614)][D2EHP].Quantitative extraction of Eu^(3+)is obtained with 0.05 mol/L[A336][D2EHP],whereas,0.1 mol/L of[P_(66614)][D2EHP]is required to achieve the same extraction rate of Eu^(3+).The extraction process is endothermic with respect to[A336][D2EHP].Stripping experiments indicate that 100%of Eu^(3+)can be back extracted from both the loaded ionic liquids using 20 vol.%HNO_(3).The highest separation factor(βY/Eu)of 653.59 is reported at pH of 3.2,and the separation factor of Eu^(3+)over La^(3+)is 30.6 at the same pH.From the leach liquors of waste tube light powder,99.98%of Eu and 99.99%Y are recovered using 0.2 mol/L[A336][D2EHP]in 2-stage cross current extraction with aqueous to organcic ratio(O/A)of 1:1 and 1:2.展开更多
Leaching method is usually used to extract rare earth(RE)elements from ion adsorbed RE ores.In the leaching process,some impurities such as aluminum(Al)enter the leaching solution.The separation of Al from RE by carbo...Leaching method is usually used to extract rare earth(RE)elements from ion adsorbed RE ores.In the leaching process,some impurities such as aluminum(Al)enter the leaching solution.The separation of Al from RE by carboxylic acid extractant 4-octyloxybenzoic acid(POOA)was studied in this article.By changing the pH value,temperature,solvent,saponification degree and other parameters,the extraction and separation performance of POOA in chloride system was systematically studied.Through specific extraction experiments and slope analysis,it can be seen that the stoichiometric ratio of POOA to Al is 3:1during the extraction process.The separation factor of Al^(3+)and Pr^(3+)can reach about 160.00.Compared with easily emulsified naphthenic acid,POOA achieves better phase separation.The above results show that saponified POOA(S-POOA)has a good separation effect on Al and RE.Under the condition of low concentration stripping acid of 0.60 mol/L HCl,the developed extraction system can be almost completely stripped,and the stripping rate reaches 97.52%.The regenerated POOA can be directly used for the recycling extraction.展开更多
A new extractant 1 hexyl 4 ethyloctyl isopropylphosphonic acid (HHEOIPP or HA) in heptane was employed to extract rare earths from hydrochloric acid medium. The dependence of extraction distribution ratio on equili...A new extractant 1 hexyl 4 ethyloctyl isopropylphosphonic acid (HHEOIPP or HA) in heptane was employed to extract rare earths from hydrochloric acid medium. The dependence of extraction distribution ratio on equilibrium aqueous pH and the concentration of extractant were investigated. On the basis of slope analysis, it was proposed that two different kinds of extracted species were formed. For rare earth elements (La~Ho) the extracted species was LnA 3(HA) 3 and for heavy rare earth elements (Er~Lu) the species was LnClA 2(HA) 3. The steric hindrance plays an important role in forming the species. The extraction constants and separation factors of the adjacent rare earths were calculated too. Compared with HDEHP and HEH/EHP, HHEOIPP is a valuable extractant with high separation selectivity. The “tetrad effect” between K ex and atomic number was observed.展开更多
The present research work examines extraction mechanism of zinc by D2 EHPA(Di-2-ethyl hexyl phosphoric acid) and comprehensively studies the main effective parameters on the process. Results of thermodynamic experimen...The present research work examines extraction mechanism of zinc by D2 EHPA(Di-2-ethyl hexyl phosphoric acid) and comprehensively studies the main effective parameters on the process. Results of thermodynamic experiments showed that zinc extraction by D2 EHPA was endothermic and spontaneous, and thermodynamic parameters including entropy and enthalpy were + 27.37 J·mol^(-1)·K^(-1) and 25.21 kJ·mol^(-1), respectively.Gibbs free energy was varied between-7.21 kJ·mol^(-1) and-8.41 kJ·mol^(-1) with the variation of temperature from 20 °C to 70 °C. Solution ionic strength was increased by addition of potassium and lithium sulfate solution while addition of calcium sulfate decreased ionic strength whereby zinc extraction efficiency was also decreased.TBP showed positive synergism at concentration of 5%(v/v) and negative synergism effect at concentrations of2% and 10%. Simultaneous addition of both TBP and salt caused extraction efficiency to drop significantly and lower both TBP and ionic strength efficiency. Results showed that a continuous addition of TBP tends to effectively improve the zinc extraction efficiency. Experiments in the presence of catalyst Ni-Raney demonstrated that zinc extraction kinetic increases remarkably and due to easy recycling of the catalyst, we can propose a novel idea in solvent extraction field.展开更多
Levulinic acid(LA)is one of the top-12 most promising biomass-based platform chemicals,which has a wide range of applications in a variety of fields.However,separation and purification of LA from aqueous solution or a...Levulinic acid(LA)is one of the top-12 most promising biomass-based platform chemicals,which has a wide range of applications in a variety of fields.However,separation and purification of LA from aqueous solution or actual hydrolysate continues to be a challenge.Among various downstream separation technologies,liquid-liquid extraction is a low-cost,effective,and simple process to separate LA.The key breakthrough lies in the development of extractants with high extraction efficiency,good hydrophobicity,and low cost.In this work,three hydrophobic deep eutectic solvents(DESs)based on tri-n-octylamine(TOA)as hydrogen bond acceptor(HBA)and alcohols(butanol,2-octanol,and menthol)as hydrogen bond donors(HBDs)were developed to extract LA from aqueous solution.The molar ratios of HBD and HBA,extraction temperature,contact time,solution pH,and initial LA concentration,DES/water volume ratios were systematically investigated.Compared with 2-octanol-TOA and menthol-TOA DES,the butanol-TOA DES exhibited the superior extraction performance for LA,with a maximum extraction efficiency of 95.79±1.4%.Moreover,the solution pH had a great impact on the LA extraction efficiency of butanol-TOA(molar ratio=3:1).It is worth noting that the extraction equilibrium time was less than 0.5 h.More importantly,the butanol-TOA(3:1)DES possesses good extraction abilities for low,medium,and high concentrations of LA.展开更多
The extraction of radioactive minor actinides(An(Ⅲ))from lanthanides(Ln(Ⅲ))is an extremely impor-tant step in nuclear waste reprocessing.Designing ligands with high-performance actinide-selectivity re-mains an essen...The extraction of radioactive minor actinides(An(Ⅲ))from lanthanides(Ln(Ⅲ))is an extremely impor-tant step in nuclear waste reprocessing.Designing ligands with high-performance actinide-selectivity re-mains an essential task.Recent works have reported that some polyazole based ligands exhibit good An(Ⅲ)/Ln(Ⅲ)separation performance.Herein,we first evaluated the effects of different polyazole side chains on the Am(Ⅲ)/Eu(Ⅲ)selectivity by exploring three pyridine-derived polyazole ligands L^(1),L^(2)and L^(3)with 1,2,4-triazole,1,2,3-triazole,and pyrazole side chains,respectively,using scalar relativistic theoretical methods.The coordination structures,bonding properties and thermodynamic behaviors of AmL(NO_(3))_(3)and EuL(NO_(3))_(3)complexes were investigated,which clarifies that the side chains do affect the electronic structure of ligand and its selectivity for Am(Ⅲ)/Eu(Ⅲ)ions.Moreover,L^(1)with 1,2,4-triazole side chains exhibited the highest selectivity for Am(Ⅲ)over Eu(Ⅲ)while the lowest complexation ability for metal ions among the three pyridine-derived polyazole ligands.Subsequently,we designed a new ligand L^(4)con-taining 1,2,4-triazole side chains and a preorganized phenanthroline backbone.Theoretically,such a new ligand was verified to show stronger complexation ability and higher selectivity for Am(Ⅲ)/Eu(Ⅲ)ions than L^(1).This work clarifies the complexation nature of polyazole based ligands with Am(Ⅲ)/Eu(Ⅲ)ions and provides design strategies for highly efficient polyazole based ligands for An(Ⅲ)/Ln(Ⅲ)separation.展开更多
The extraction and separation of heavy rare earths(REs) using newly synthesized a-aminophosphonic acid extractant 2-ethylhexyl-3-(2-ethylhexylamino)pentan-3-yl phosphonic acid(HEHAPP, HA) in nheptane were invest...The extraction and separation of heavy rare earths(REs) using newly synthesized a-aminophosphonic acid extractant 2-ethylhexyl-3-(2-ethylhexylamino)pentan-3-yl phosphonic acid(HEHAPP, HA) in nheptane were investigated from chloride medium. The extraction stoichiometries of lanthanum, gadolinium, yttrium and lutetium are determined to be REA3 by the slope analysis method. The favorable separation factors of adjacent heavy REs(Ⅲ),i.e. β(Y/Ho), β(Er/Y),β(Tm/Er),β(Yb/Tm) and β(Lu/Yb), are determined to be1.87,1.36, 3.21,3.22 and 1.93, respectively, when extracted from a binary system at proper condition. The loading capacities of HA for Ho, Er, Yb and Lu increase in the order Ho 〈 Er 〈 Yb 〈 Lu with the values being 0.201, 0.205, 0.216 and 0.229 mol/L, respectively. So HA would be a potential extractant for the separation of heavy REs(Ⅲ). Among inorganic acids such as H2 SO4, HNO3 and HCl, HCl is tested to be the most effective stripping agent.展开更多
基金Project(2014CB643401) supported by the National Basic Research Program of ChinaProject(51674294) supported by the National Natural Science Foundation of ChinaProject(2016TP1007) supported by the Hunan Provincial Science and Technology Plan,China
文摘Phase separation rate is a critical character in determining the usefulness of a solvent extraction system in hydrometallurgy. A survey of the synergistic mixture containing dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexly 4-pyridinecarboxylate ester (4PC) for the extraction of cobalt from acidic single metal sulfate solution was carried out to suggest how the physicochemical properties and the morphology of the reverse micelles in the loaded organic phase affect the phase separation. The results show that effective parameters affecting the phase separation are the viscosity and the excess water uptake of the loaded organic phase. It is obvious that the specific settling rate (SSR) decreases with the apparent increase of these two parameters. The measurement of small angle X-ray scattering (SAXS) proves that the morphology of the reversed micelles in the loaded organic phase changes evidently with the change of the specific settling rate (SSR).
文摘An experimental investigation was presented on the separation of Cu(Ⅱ), Zn(Ⅱ), and Cd(Ⅱ) from a rich sulfate leachate of zinc slag by solvent extraction. The results of orthogonal experiments indicate that LIX 984N is highly selective and very efficient in the extraction of Cu(Ⅱ), and the analysis of variance indicates that the sequence of parameters according to their influence on the separation efficiency is phase ratio 〉 LIX 984N concentration 〉 pH value 〉 extraction time. The optimal condition for copper extraction is obtained as 25% of LIX 984N concentration, 7 rain of extraction time, 3:2 of phase ratio O/A, and pH = 1.7. The separation of Zn(Ⅱ) and Cd(Ⅱ) was performed after the copper extraction from the raffinate. Comparative analysis of the separation with di-2-ethylhexyl phosphoric acid (D2EHPA), D2EHPA-tributyl- phosophate (TBP) synergistic extracting system, and 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester (HEHEHP) was made at pH = 2.0. It is demonstrated that the extraction efficiency with D2EHPA is improved after being saponified by sodium hydroxide, and D2EHPA-TBP synergistic extracting, as well as HEHEHP, has a superior selectivity to Zn(Ⅱ) over Cd(Ⅱ).
基金supported financially by a grant from Shougang Group Co.,Ltd.,China(No.K202200134Y).
文摘The feasibility of simultaneous water recovery,salt separation and effective descaling of hypersaline brine was investigated by diisopropylamine(DIPA)-based directional solvent extraction(DSE),using diluted/concentrated seawater with initial saline concentration range of 12–237 g/L at extraction temperatures of 5 and 15℃,respectively.The water recovery shows an obvious boundary at saline concentration of 115 g/L under dual effect of specific water extraction efficiency and extraction cycles.High Cl^(–) ion concentration in product water is in sharp contrast to the nearly complete removal of SO_(4)^(2–)and hardness ions,indicating that DIPA-based DSE process indeed achieved efficient separation and purification of Cl^(–) ion from hypersaline brines.Especially,the radical precipitation of Mg^(2+)and Ca^(2+)ions in form of Mg(OH)_(2)and CaCO_(3)demonstrates effective descaling potential,although it leads to more DIPA residues in dewatered raffinate than product water.Moreover,an exponential correlation between the Cl^(–) removal efficiency and specific water extraction efficiency further reveals the intrinsic relationship of water extraction process and transfer of Cl^(–) ion to the product water.Overall,the study provides a novel approach for integrating the water recovery and separation of Cl^(–) ion from ultra-high-salinity brines with radical precipitation of Mg^(2+)and Ca^(2+) ions in one step.
文摘The separation of cobalt and nickel in the ammoniacal sulfate solution by non equilibrium solvent extraction with a phosphate (P303) as extractant was studied. In the experiment, the effects of equilibrium pH value in aqueous phase, contact time of the two phases, the air blowing time for feed liquor in the open beaker on percentage extraction of cobalt and nickel and percentage reextraction of nickel from the loaded organic phase with dilute H 2SO 4. etc were studied. The results showed that: Co(Ⅱ) can be oxidized to Co(Ⅲ) ammino complex by adding (NH 4) 2S 2O 8 or blowing air to the aqueous phase, and Co(Ⅲ) ammino complex is a kind of kinetically inert complex. Its extractive speed is very slow, while the nickel′s is much faster than that of cobalt. By controlling the contact time of the two phases, nickel can be separated from cobalt by non equilibrium solvent extraction. Then nickel was reextracted from the loaded organic phase with dilute H 2SO 4.
基金Supported by the National Natural Science Foundation of China (No.29736170)
文摘Pre-dispersed solvent extraction (PDSE) was used to extract quercentin from its diluted solution. The influences of temperature, phase volume ratio (PVR), concentration of sodium Dodecyl benzene sulphonate and pH value etc. on the extraction efficiency were examined. It is found that, compared with traditional extraction techniques under the same condition, a higher extraction productivity can be obtained by PDSE. The stability of colloidal liquid aphrons plays an important role in this process. In a certain scope, the extraction efficiency increases with PVR. Excessive amount of solvent is not much helpful. A new analytical method by using ultraviolet spectrometer to determine the concentration of quercentin is established.
文摘The extraction of the trivalent middle rare earths from chloride media by kerosene solutions of 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester as an extractant was studied. The separation factors between the elements using solution simulating wastes from NiMH spent batteries have been evaluated: the order of the extractive ability of extractant can be confirmed in Tb>Gd>Eu>Sm.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR201702160381)
文摘The preparation of nuclear-grade zirconium and hafnium is very important for nuclear power. The separation of hafnium from zirconium in a hydrochloric acid solution by solvent extraction was investigated with di(2-ethylhexyl)phosphoric acid(D2 EHPA). The effects of hydrochloric acid concentration, extractant concentration,diluents, and temperature on the distribution coefficient of hafnium and zirconium were studied. The species extracted were ZrOA_2·2 HA and HfOA_2-2 HA. In this process, the separation factors varied with different diluents and followed the order octane > hexane > toluene > chloroform.A high separation factor value of 4.16 was obtained under the conditions of a solution containing 0.05 mol/L HCl and0.01 mol/L D2 EHPA for the separation of hafnium from zirconium. The extraction reaction was endothermic.
基金financially supported by the National Natural Science Foundation of China(No.51504225).
文摘Functionalized ionic liquids(FILs)as extractants were employed for the separation of tungsten and molybdenum from a sulfate solution for the first time.The effects of initial pH,extractant concentration,metal concentrations in the feed were comprehensively investigated.The results showed that tricaprylmethylammonium bis(2,4,4-trimethylpentyl)phosphinate([A336][Cyanex272])could selectively extract W over Mo at an initial pH value of 5.5;the best separation factorβ_(W/Mo) of 25.61 was obtained for a solution with low metal concentrations(WO3:2.49 g/L,Mo:1.04 g/L).The[A336][Cyanex272]system performed effectively for solutions of different W/Mo molar ratios and different metal ion concentrations in the feed.The chemical reaction between[A336][Cyanex272]and W followed the ion association mechanism,which was further proved by the Fourier-transform infrared(FTIR)spectra of loaded[A336][Cyanex272]and the free extractant.The stripping experiments indicated that 95.48%W and 100.00%Mo were stripped using a 0.20 mol/L sodium hydroxide solution.Finally,the selective extractions of W and Mo from two synthetic solutions of different high metal concentrations were obtained;the separation factorβW/Mo reached 23.24 and 17.59 for the first and second solutions,respectively.The results suggest the feasibility of[A336][Cyanex272]as an extractant for the separation of tungsten and molybdenum.
基金Project(2010ZX07212-008) supported by the Major Science and Technology Program for Water Pollution Control and Treatment the China Molybdenum Co., Ltd.for financial support
文摘An novel method on preparation of precursor solution for solvent separation of molybdenum (Mo) and tungsten (W) by hydrogen peroxide (H2O2)-complexation from the ammonium tungstate solution containing high Mo was studied. The precursor solution was obtained via evaporation deamination and H202-complex transformation processes. Then it was extracted with a mixture extractant of tri-alkyl phosphine oxide (TRPO) and tributyl phosphate (TBP) to separate Mo and W. The results indicated that the evaporation deamination complex method reduced the acid consumption by more than 90% in comparison with the traditional directly acid regulation complex method. The transformation rates of W and Mo were higher than 95% and the decomposition rate of H202 was less than 15% at a 1.8-1.9 times H202 dosage, 45-50 ℃, initial pH of 1.80-1.90, and transformation volume ratio of 100% for 60 min in the H2O2-complexation transformation process. The minimum extraction rate of W was 2%, the maximum extraction rate of Mo was 82.6% and the highest separation coefficient was 76.7 in a single-stage extraction.
基金Projects(52034002,U1802253)supported by the National Natural Science Foundation of ChinaProject(2019YFC1908401)supported by the National Technology Support Project of China。
文摘This work investigated the separation of potassium from sodium in alkaline solution using substituted phenol-based extractants.Superior potassium extraction was achieved with 4-tert-butyl-2-(α-methylbenzyl)phenol(t-BAMBP)than 4-sec-butyl-2-(α-methylbenzyl)phenol(BAMBP).The optimum conditions for the extraction were 1 mol/L t-BAMBP,3:1 volumetric phase ratio(O/A),and two extraction stages.After cross-current extraction,the extraction ratio of potassium reached 90.8%.After scrubbing with deionised water at phase ratio of 4:1 and scrubbing stage of 4,a sodium scrubbing efficiency of 88.2%was obtained.After stripping using 1 mol/L H_(2)SO_(4) at phase ratio of 3:1,the stripping efficiency of potassium reached 94.2%.The potassium/sodium(K/Na)concentration ratio increased 14.3 times from 0.15 in the feed solution to 2.3 in the stripping solution.The efficient separation of potassium from sodium in alkaline solution was achieved via solvent extraction with t-BAMBP.
基金Supported by the National Natural Science Foundation of China(No.21878028,21606026)the Fundamental Research Funds for the Central Universities(No.106112017CDJQJ228809)+2 种基金Chongqing Technological Innovation and Application Demonstration for Social and Livelihood development(No.cstc2018jscx-msyb X0336)Chongqing Research Program of Basic Research and Frontier Technology(No.CSTC2016JCYJA0474)Hundred Talents Program of Chongqing University
文摘Extractive distillation(ED) is one of the most promising approaches for the separation of the azeotropic or closeboiling mixtures in the chemical industry. The purpose of this paper is to provide a broad overview of the recent development of key aspects in the ED process involving conceptual design, solvent selection, and separation strategies. To obtain the minimum entrainer feed flow rate and reflux ratio for the ED process, the conceptual design of azeotropic mixture separation based on a topological analysis via thermodynamic feasibility insights involving residue curve maps, univolatility lines, and unidistribution curves is presented. The method is applicable to arbitrary multicomponent mixtures and allows direct screening of design alternatives. The determination of a suitable solvent is one of the key steps to ensure an effective and economical ED process. Candidate entrainers can be obtained from heuristics or literature studies while computer aided molecular design(CAMD) has superiority in efficiency and reliability. To achieve optimized extractive distillation systems, a brief review of evaluation method for both entrainer design and selection through CAMD is presented. Extractive distillation can be operated either in continuous extractive distillation(CED) or batch extractive distillation(BED), and both modes have been well-studied depending on the advantages in flexibility and low capital costs. To improve the energy efficiency, several configurations and technological alternatives can be used for both CED and BED depending on strategies and main azeotropic feeds. The challenge and chance of the further ED development involving screening the best potential solvents and exploring the energy-intensive separation strategies are discussed aiming at promoting the industrial application of this environmentally friendly separation technique.
基金This project is financially supported in part by the Gansu Province Natural Science Foundation (ZR96016) the KJCXGC-01 of NWNU, 2000, China
文摘A method is proposed for the extraction and separation of trivalent gallium,indium and thallium from their corresponding aqueous solutions at 65 deg C with 2,6-bis-(1'-phenyl-3'-methyl-5'-oxopyrazole-4') pyridineacyl (H_2PMBPP or H_2A) using molten paraffinwax as a diluent. The values of pH_(1/2) for extraction of gallium, indium and thallium are2.62,4.32 and 4.93, respectively. Gallium can he extracted by H_2PMBPP at a lower acid medium. Theeffect of solvent and the composition of the extracted species are reported. And the thermodynamicdata of the extraction are also obtained.
文摘A significant development in the theory of countercurrent extraction will be presented in this article. New expressions of the term in countercurrent extraction process analysis, “Adjacent Stage Impurity Ratio” (ASIR), are deduced. Furthermore, based on the term together with mass balance and extraction equilibrium, the conditions where a given countercurrent extraction separation operation can have minimum amounts of both extracting solvent and scrubbing agent solution can be estimated, and the equations of the two minimum amounts can be deduced. It was found that the equations for a two-component separation using a single aqueous or organic feed are exactly the same as they appeared in the theory initially established in 1970s. Unlike its earlier version, the present derivation does not involve feed-stage-composition hypothesis, and also has the advantage of dealing with a double-feed system where both aqueous and organic feeds are simultaneously employed whereas the earlier theory can only analyze a separation using a single aqueous or organic feed.
文摘The extraction of Eu^(3+)from chloride medium using bifunctional ionic liquid extractants(Bif-ILEs)tri-n-octylmethyl ammonium bis(2-ethyl hexyl)phosphate([A336][D2EHP])and trihexyltetradecyl phosphonium bis(2-ethylhexyl)phosphate([P_(66614)][D2EHP])in kerosene was studied to develop environmentally friendly extraction process.The extraction behavior of Eu^(3+)was examined by varying key process parameters.The extraction behavior indicates that ammonium-based ionic liquid[A336][D2EHP]shows better extraction efficiency of Eu^(3+)than that of phosphonium-based ionic liquid[P_(66614)][D2EHP].Quantitative extraction of Eu^(3+)is obtained with 0.05 mol/L[A336][D2EHP],whereas,0.1 mol/L of[P_(66614)][D2EHP]is required to achieve the same extraction rate of Eu^(3+).The extraction process is endothermic with respect to[A336][D2EHP].Stripping experiments indicate that 100%of Eu^(3+)can be back extracted from both the loaded ionic liquids using 20 vol.%HNO_(3).The highest separation factor(βY/Eu)of 653.59 is reported at pH of 3.2,and the separation factor of Eu^(3+)over La^(3+)is 30.6 at the same pH.From the leach liquors of waste tube light powder,99.98%of Eu and 99.99%Y are recovered using 0.2 mol/L[A336][D2EHP]in 2-stage cross current extraction with aqueous to organcic ratio(O/A)of 1:1 and 1:2.
基金Project supported by the National Key R&D Program of China(2017YFE0106900)Fujian Program for High-Level Entrepreneurial and Innovative Talents Introduction+1 种基金Key R&D Program of Jiangxi Province(S2020ZPYFG0029)Key Program of the Chinese Academy of Sciences(ZDRW-CN-2021-3-1)。
文摘Leaching method is usually used to extract rare earth(RE)elements from ion adsorbed RE ores.In the leaching process,some impurities such as aluminum(Al)enter the leaching solution.The separation of Al from RE by carboxylic acid extractant 4-octyloxybenzoic acid(POOA)was studied in this article.By changing the pH value,temperature,solvent,saponification degree and other parameters,the extraction and separation performance of POOA in chloride system was systematically studied.Through specific extraction experiments and slope analysis,it can be seen that the stoichiometric ratio of POOA to Al is 3:1during the extraction process.The separation factor of Al^(3+)and Pr^(3+)can reach about 160.00.Compared with easily emulsified naphthenic acid,POOA achieves better phase separation.The above results show that saponified POOA(S-POOA)has a good separation effect on Al and RE.Under the condition of low concentration stripping acid of 0.60 mol/L HCl,the developed extraction system can be almost completely stripped,and the stripping rate reaches 97.52%.The regenerated POOA can be directly used for the recycling extraction.
文摘A new extractant 1 hexyl 4 ethyloctyl isopropylphosphonic acid (HHEOIPP or HA) in heptane was employed to extract rare earths from hydrochloric acid medium. The dependence of extraction distribution ratio on equilibrium aqueous pH and the concentration of extractant were investigated. On the basis of slope analysis, it was proposed that two different kinds of extracted species were formed. For rare earth elements (La~Ho) the extracted species was LnA 3(HA) 3 and for heavy rare earth elements (Er~Lu) the species was LnClA 2(HA) 3. The steric hindrance plays an important role in forming the species. The extraction constants and separation factors of the adjacent rare earths were calculated too. Compared with HDEHP and HEH/EHP, HHEOIPP is a valuable extractant with high separation selectivity. The “tetrad effect” between K ex and atomic number was observed.
文摘The present research work examines extraction mechanism of zinc by D2 EHPA(Di-2-ethyl hexyl phosphoric acid) and comprehensively studies the main effective parameters on the process. Results of thermodynamic experiments showed that zinc extraction by D2 EHPA was endothermic and spontaneous, and thermodynamic parameters including entropy and enthalpy were + 27.37 J·mol^(-1)·K^(-1) and 25.21 kJ·mol^(-1), respectively.Gibbs free energy was varied between-7.21 kJ·mol^(-1) and-8.41 kJ·mol^(-1) with the variation of temperature from 20 °C to 70 °C. Solution ionic strength was increased by addition of potassium and lithium sulfate solution while addition of calcium sulfate decreased ionic strength whereby zinc extraction efficiency was also decreased.TBP showed positive synergism at concentration of 5%(v/v) and negative synergism effect at concentrations of2% and 10%. Simultaneous addition of both TBP and salt caused extraction efficiency to drop significantly and lower both TBP and ionic strength efficiency. Results showed that a continuous addition of TBP tends to effectively improve the zinc extraction efficiency. Experiments in the presence of catalyst Ni-Raney demonstrated that zinc extraction kinetic increases remarkably and due to easy recycling of the catalyst, we can propose a novel idea in solvent extraction field.
基金supported by the Key Area Research&Development Program of Guangdong Province(2020B0101070001)the National Natural Science Foundation of China(21978053,51508547)。
文摘Levulinic acid(LA)is one of the top-12 most promising biomass-based platform chemicals,which has a wide range of applications in a variety of fields.However,separation and purification of LA from aqueous solution or actual hydrolysate continues to be a challenge.Among various downstream separation technologies,liquid-liquid extraction is a low-cost,effective,and simple process to separate LA.The key breakthrough lies in the development of extractants with high extraction efficiency,good hydrophobicity,and low cost.In this work,three hydrophobic deep eutectic solvents(DESs)based on tri-n-octylamine(TOA)as hydrogen bond acceptor(HBA)and alcohols(butanol,2-octanol,and menthol)as hydrogen bond donors(HBDs)were developed to extract LA from aqueous solution.The molar ratios of HBD and HBA,extraction temperature,contact time,solution pH,and initial LA concentration,DES/water volume ratios were systematically investigated.Compared with 2-octanol-TOA and menthol-TOA DES,the butanol-TOA DES exhibited the superior extraction performance for LA,with a maximum extraction efficiency of 95.79±1.4%.Moreover,the solution pH had a great impact on the LA extraction efficiency of butanol-TOA(molar ratio=3:1).It is worth noting that the extraction equilibrium time was less than 0.5 h.More importantly,the butanol-TOA(3:1)DES possesses good extraction abilities for low,medium,and high concentrations of LA.
基金supported by the National Natural Science Foundation of China(Nos.U2067212,22076188,11875058,U20B2019)the National Science Fund for Distinguished Young Scholars(No.21925603).
文摘The extraction of radioactive minor actinides(An(Ⅲ))from lanthanides(Ln(Ⅲ))is an extremely impor-tant step in nuclear waste reprocessing.Designing ligands with high-performance actinide-selectivity re-mains an essential task.Recent works have reported that some polyazole based ligands exhibit good An(Ⅲ)/Ln(Ⅲ)separation performance.Herein,we first evaluated the effects of different polyazole side chains on the Am(Ⅲ)/Eu(Ⅲ)selectivity by exploring three pyridine-derived polyazole ligands L^(1),L^(2)and L^(3)with 1,2,4-triazole,1,2,3-triazole,and pyrazole side chains,respectively,using scalar relativistic theoretical methods.The coordination structures,bonding properties and thermodynamic behaviors of AmL(NO_(3))_(3)and EuL(NO_(3))_(3)complexes were investigated,which clarifies that the side chains do affect the electronic structure of ligand and its selectivity for Am(Ⅲ)/Eu(Ⅲ)ions.Moreover,L^(1)with 1,2,4-triazole side chains exhibited the highest selectivity for Am(Ⅲ)over Eu(Ⅲ)while the lowest complexation ability for metal ions among the three pyridine-derived polyazole ligands.Subsequently,we designed a new ligand L^(4)con-taining 1,2,4-triazole side chains and a preorganized phenanthroline backbone.Theoretically,such a new ligand was verified to show stronger complexation ability and higher selectivity for Am(Ⅲ)/Eu(Ⅲ)ions than L^(1).This work clarifies the complexation nature of polyazole based ligands with Am(Ⅲ)/Eu(Ⅲ)ions and provides design strategies for highly efficient polyazole based ligands for An(Ⅲ)/Ln(Ⅲ)separation.
基金Project supported by National Basic Research Program of China(973 program,2012CBA01206)the National Natural Science Foundation of China(21521092,51222404)the Strategic Priority Research Program of CAS(XDA02030100)
文摘The extraction and separation of heavy rare earths(REs) using newly synthesized a-aminophosphonic acid extractant 2-ethylhexyl-3-(2-ethylhexylamino)pentan-3-yl phosphonic acid(HEHAPP, HA) in nheptane were investigated from chloride medium. The extraction stoichiometries of lanthanum, gadolinium, yttrium and lutetium are determined to be REA3 by the slope analysis method. The favorable separation factors of adjacent heavy REs(Ⅲ),i.e. β(Y/Ho), β(Er/Y),β(Tm/Er),β(Yb/Tm) and β(Lu/Yb), are determined to be1.87,1.36, 3.21,3.22 and 1.93, respectively, when extracted from a binary system at proper condition. The loading capacities of HA for Ho, Er, Yb and Lu increase in the order Ho 〈 Er 〈 Yb 〈 Lu with the values being 0.201, 0.205, 0.216 and 0.229 mol/L, respectively. So HA would be a potential extractant for the separation of heavy REs(Ⅲ). Among inorganic acids such as H2 SO4, HNO3 and HCl, HCl is tested to be the most effective stripping agent.