期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Surface characteristics analysis of fractures induced by supercritical CO_(2)and water through three-dimensional scanning and scanning electron micrography 被引量:7
1
作者 Hao Chen Yi Hu +4 位作者 Jiawei Liu Feng Liu Zheng Liu Yong Kang Xiaochuan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1047-1058,共12页
Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyze... Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyzed the fracture surface characteristics induced by supercritical carbon dioxide(SC-CO_(2))and water in open-hole and perforation completion conditions under triaxial stresses.A simple calculation method was proposed to quantitatively analyze the fracture surface area and roughness in macro-level based on three-dimensional(3D)scanning data.In micro-level,scanning electron micrograph(SEM)was used to analyze the features of fracture surface.The results showed that the surface area of the induced fracture increases with perforation angle for both SC-CO_(2)and water fracturing,and the surface area of SC-CO_(2)-induced fracture is 6.49%e58.57%larger than that of water-induced fracture.The fractal dimension and surface roughness of water-induced fractures increase with the increase in perforation angle,while those of SC-CO_(2)-induced fractures decrease with the increasing perforation angle.A considerable number of microcracks and particle peeling pits can be observed on SC-CO_(2)-induced fracture surface while there are more flat particle surfaces in water-induced fracture surface through SEM images,indicating that fractures tend to propagate along the boundary of the particle for SC-CO_(2)fracturing while water-induced fractures prefer to cut through particles.These findings are of great significance for analyzing fracture mechanism and evaluating fracturing stimulation performance. 展开更多
关键词 Supercritical carbon dioxide(SC-CO_(2))fracturing Quantitative characterization of surface features Surface roughness and fractal dimension Three-dimensional(3D)scanning scanning electron micrograph(SEM)
下载PDF
Investigation on the Electrochemical Polymerization of Catechol by Means of Rotating Ring-disk Electrode 被引量:1
2
作者 孔泳 穆绍林 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2003年第6期630-637,共8页
The electrolysis of catechol was studied in the pH values of 1 to 10. The results from the rotating ring disk electrode (RRDE) experiments show that at low pH values, the electrochemical polymerization of catechol wa... The electrolysis of catechol was studied in the pH values of 1 to 10. The results from the rotating ring disk electrode (RRDE) experiments show that at low pH values, the electrochemical polymerization of catechol was performed by one step, and at higher pH values, the electrochemical polymerization of catechol was carried out by two steps, i.e . oxidation of catechol and followed by polymerization. The intermediates generated at the disk were detected at the ring electrode in the ring potential region of -0.2 to 0 V (vs. Ag/AgCl). One of reasons for the decrease in the ratio of i r to i d with increasing the ring potential is caused by formation of positively charged intermediates at the disk electrode. This ratio increases with increasing the rotation rate of the RRDE, which indicates that the intermediates are not stable. A shielding effect during polymerization of catechol was observed when the ring potential was set at 0.1 V (vs. Ag/AgCl). The electron spin resonance (ESR) of polycatechol shows that polycatechol possesses unpaired electrons. The images of polycatechol films synthesized at different conditions are described. 展开更多
关键词 electrochemical polymerization CATECHOL rotating ring disk electrode INTERMEDIATES electron spin resonance scanning electron micrographs
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部