Common bean (Phaseolus vulgaris L.) is an economic important crop and one of the major grain legumes for human consumption in Latin America, Africa and Asia. A morphological study of shoot induced from embryonic axes ...Common bean (Phaseolus vulgaris L.) is an economic important crop and one of the major grain legumes for human consumption in Latin America, Africa and Asia. A morphological study of shoot induced from embryonic axes development in four Costa Rican bean varieties (Brunca, Huetar, Guaymi and Bribri) cultivated on MS media with or without 5 mg·L–1 de N6-benzylaminopurine (BAP) by scanning electron microscopy (SEM) was developed in the present work. Micrographs showed similarities and differences in the ultrastructure of the apical dome, epidermal surface, stomata and different types of trichomes in the varieties cultivated on organogenesis media. Genotypes with advantageous morphological characteristics for genetic transformation, in particular an exposed apical dome, were identified. This work will contribute to the optimization of the in vitro regeneration of four common bean varieties.展开更多
The kinetic,morphological,crystallographic,and magnetic characteristics of thermally induced martensites in Fe-13.4wt% Mn-5.2wt%Mo alloy were investigated by scanning electron microscopy(SEM),transmission electron m...The kinetic,morphological,crystallographic,and magnetic characteristics of thermally induced martensites in Fe-13.4wt% Mn-5.2wt%Mo alloy were investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM),and M(o|¨)ssbauer spectroscopy.The experimental results reveal that two types of thermal-induced martensites,e(hcp) andα'(bcc) martensites,are formed in the as-quenched condition,and these transformations have athermal characters.Mo addition to the Fe-Mn alloy does not change the coexistence ofεandα' martensites with the Mn content between 10wt%and 15wt%.Besides,M(o|¨)ssbauer spectra reveal a paramagnetic character with a singlet for theγ(fcc) austenite andεmartensite phases and a ferromagnetic character with a broad sextet for theα' martensite phase. The volume fraction ofα' martensite forming in the quenched alloy is much more than that of theεmartensite.展开更多
In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the...In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the evolution of pore quantity,size(length,width and cross-sectional area),orientation,shape(aspect ratio,roundness and solidity)and their anisotropy—interpreted by machine learning.Results indicate that heating generates new pores in both organic matter and inorganic minerals.However,the newly formed pores are smaller than the original pores and thus reduce average lengths and widths of the bedding-parallel pore system.Conversely,the average pore lengths and widths are increased in the bedding-perpendicular direction.Besides,heating increases the cross-sectional area of pores in low-maturity oil shales,where this growth tendency fluctuates at<300℃ but becomes steady at>300℃.In addition,the orientation and shape of the newly-formed heating-induced pores follow the habit of the original pores and follow the initial probability distributions of pore orientation and shape.Herein,limited anisotropy is detected in pore direction and shape,indicating similar modes of evolution both bedding-parallel and bedding-normal.We propose a straightforward but robust model to describe evolution of pore system in low-maturity oil shales during heating.展开更多
The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and p...The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and propagation of the crack, and the fracture behavior in materials have been observed and studied. It is found that in the case of the tensile test, the crack emerged in SiC fiber initially. In the case of the strong cohesion of the fiber-metal interface, the crack propagated in the fiber, meanwhile the fibers in the neighborhood of the cracked fiber began to crack and the Mg-Al metal deformed plastically, and at last the material fractured. Otherwise the toughness of the materials grows in the case of the lower cohesion of the fiber-metal matrix interface.展开更多
本文重点在分析比较PMT视频放大系统与PMT光子计数系统的噪声源,信噪比及探测灵敏度的基础上,就光子计数技术在扫描电镜(Scanning Electron Microscope,简称SEM)二次电子信号检测中的可能应用进行了初步的理论探讨。分析表明,SEM采用光...本文重点在分析比较PMT视频放大系统与PMT光子计数系统的噪声源,信噪比及探测灵敏度的基础上,就光子计数技术在扫描电镜(Scanning Electron Microscope,简称SEM)二次电子信号检测中的可能应用进行了初步的理论探讨。分析表明,SEM采用光子计数技术后,信号探测灵敏度可提高一个量级以上,从而在相同的电子枪发射亮度与既定的电子光学系统下,可获得更高的图象分辩率与清晰度。展开更多
Ferrospheres in fly ashes from a coal-fired power plant were extracted by a magnetic separation technique and their microstructure was studied by scanning electron microscopy (SEM), energy dispersive X-ray analysis (E...Ferrospheres in fly ashes from a coal-fired power plant were extracted by a magnetic separation technique and their microstructure was studied by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and environmental scanning electron microscopy (ESEM). Ferrospheres in fly ashes show significant iron enrichment compared to their respective fly ashes. Iron oxides in ferrospheres mainly occur as minerals magnetite (Fe3O4) and hematite (α-Fe2O3), which are derived mainly from the decomposition and oxidation of iron-bearing minerals in coal during combustion. EDX data indicate that ferrospheres also contain Si, S, Al and Ca resulting from quartz, mullite, anhydrite and amorphous materials. A large percentage of ferrospheres are commonly 5~50 μm in size. The microstructure of ferrospheres includes smooth, polygonal, dendritic, granular and molten drop characteristics. SEM coupled with EDX provided fast and accurate results of the microstructure and chemical composition of ferrospheres, and helped us to assess environmental issues related to the disposal and utilization of fly ashes.展开更多
Ground failure is a major contributor to fatalities in underground mines in the US.Underground coal mines in the Northern Appalachian have weak roof rock composed of shale,which is prone to failure under high horizont...Ground failure is a major contributor to fatalities in underground mines in the US.Underground coal mines in the Northern Appalachian have weak roof rock composed of shale,which is prone to failure under high horizontal stress.Understanding the relationship among strength,specimen size and rock petrographic parameters is essential for developing an effective ground control plan.Size effect studies have found that rock strength varies with specimen size.This paper attempts to understand this strength variation using three specimen sizes(254-mm,508-mm,and 762-mm).The specimen strength was measured and the major petrographic parameters affecting the strength,namely grain size,grain shape,quartz content,clay content,etc.were analyzed using X-ray diffraction(XRD)and scanning electron microscopy(SEM).The petrographic parameters were then correlated with the strength of the three differently sized specimens.The results showed that 508-mm specimen had the lowest strength.Quartz content of the 508-mm specimen was lower than that of 254-mm and 762-mm specimens.Clay content and average grain size of the 508-mm specimen were higher than those of 254-mm and 762-mm specimens.These results clearly show that grain size,quartz content and clay content contribute to strength variation observed in differently sized shale specimens.展开更多
文摘Common bean (Phaseolus vulgaris L.) is an economic important crop and one of the major grain legumes for human consumption in Latin America, Africa and Asia. A morphological study of shoot induced from embryonic axes development in four Costa Rican bean varieties (Brunca, Huetar, Guaymi and Bribri) cultivated on MS media with or without 5 mg·L–1 de N6-benzylaminopurine (BAP) by scanning electron microscopy (SEM) was developed in the present work. Micrographs showed similarities and differences in the ultrastructure of the apical dome, epidermal surface, stomata and different types of trichomes in the varieties cultivated on organogenesis media. Genotypes with advantageous morphological characteristics for genetic transformation, in particular an exposed apical dome, were identified. This work will contribute to the optimization of the in vitro regeneration of four common bean varieties.
基金supported by the Kirikkale University Scientific Research Fund(Nos.2008/34 and 2008/35)
文摘The kinetic,morphological,crystallographic,and magnetic characteristics of thermally induced martensites in Fe-13.4wt% Mn-5.2wt%Mo alloy were investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM),and M(o|¨)ssbauer spectroscopy.The experimental results reveal that two types of thermal-induced martensites,e(hcp) andα'(bcc) martensites,are formed in the as-quenched condition,and these transformations have athermal characters.Mo addition to the Fe-Mn alloy does not change the coexistence ofεandα' martensites with the Mn content between 10wt%and 15wt%.Besides,M(o|¨)ssbauer spectra reveal a paramagnetic character with a singlet for theγ(fcc) austenite andεmartensite phases and a ferromagnetic character with a broad sextet for theα' martensite phase. The volume fraction ofα' martensite forming in the quenched alloy is much more than that of theεmartensite.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFE0129800)the National Natural Science Foundation of China(Grant No.42202204)。
文摘In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the evolution of pore quantity,size(length,width and cross-sectional area),orientation,shape(aspect ratio,roundness and solidity)and their anisotropy—interpreted by machine learning.Results indicate that heating generates new pores in both organic matter and inorganic minerals.However,the newly formed pores are smaller than the original pores and thus reduce average lengths and widths of the bedding-parallel pore system.Conversely,the average pore lengths and widths are increased in the bedding-perpendicular direction.Besides,heating increases the cross-sectional area of pores in low-maturity oil shales,where this growth tendency fluctuates at<300℃ but becomes steady at>300℃.In addition,the orientation and shape of the newly-formed heating-induced pores follow the habit of the original pores and follow the initial probability distributions of pore orientation and shape.Herein,limited anisotropy is detected in pore direction and shape,indicating similar modes of evolution both bedding-parallel and bedding-normal.We propose a straightforward but robust model to describe evolution of pore system in low-maturity oil shales during heating.
文摘The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and propagation of the crack, and the fracture behavior in materials have been observed and studied. It is found that in the case of the tensile test, the crack emerged in SiC fiber initially. In the case of the strong cohesion of the fiber-metal interface, the crack propagated in the fiber, meanwhile the fibers in the neighborhood of the cracked fiber began to crack and the Mg-Al metal deformed plastically, and at last the material fractured. Otherwise the toughness of the materials grows in the case of the lower cohesion of the fiber-metal matrix interface.
文摘本文重点在分析比较PMT视频放大系统与PMT光子计数系统的噪声源,信噪比及探测灵敏度的基础上,就光子计数技术在扫描电镜(Scanning Electron Microscope,简称SEM)二次电子信号检测中的可能应用进行了初步的理论探讨。分析表明,SEM采用光子计数技术后,信号探测灵敏度可提高一个量级以上,从而在相同的电子枪发射亮度与既定的电子光学系统下,可获得更高的图象分辩率与清晰度。
基金Project supported by the National Natural Science Foundation of China (No. 40771096)the Natural Science Foundation of Zhejiang Province (No. R305078), China
文摘Ferrospheres in fly ashes from a coal-fired power plant were extracted by a magnetic separation technique and their microstructure was studied by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and environmental scanning electron microscopy (ESEM). Ferrospheres in fly ashes show significant iron enrichment compared to their respective fly ashes. Iron oxides in ferrospheres mainly occur as minerals magnetite (Fe3O4) and hematite (α-Fe2O3), which are derived mainly from the decomposition and oxidation of iron-bearing minerals in coal during combustion. EDX data indicate that ferrospheres also contain Si, S, Al and Ca resulting from quartz, mullite, anhydrite and amorphous materials. A large percentage of ferrospheres are commonly 5~50 μm in size. The microstructure of ferrospheres includes smooth, polygonal, dendritic, granular and molten drop characteristics. SEM coupled with EDX provided fast and accurate results of the microstructure and chemical composition of ferrospheres, and helped us to assess environmental issues related to the disposal and utilization of fly ashes.
文摘Ground failure is a major contributor to fatalities in underground mines in the US.Underground coal mines in the Northern Appalachian have weak roof rock composed of shale,which is prone to failure under high horizontal stress.Understanding the relationship among strength,specimen size and rock petrographic parameters is essential for developing an effective ground control plan.Size effect studies have found that rock strength varies with specimen size.This paper attempts to understand this strength variation using three specimen sizes(254-mm,508-mm,and 762-mm).The specimen strength was measured and the major petrographic parameters affecting the strength,namely grain size,grain shape,quartz content,clay content,etc.were analyzed using X-ray diffraction(XRD)and scanning electron microscopy(SEM).The petrographic parameters were then correlated with the strength of the three differently sized specimens.The results showed that 508-mm specimen had the lowest strength.Quartz content of the 508-mm specimen was lower than that of 254-mm and 762-mm specimens.Clay content and average grain size of the 508-mm specimen were higher than those of 254-mm and 762-mm specimens.These results clearly show that grain size,quartz content and clay content contribute to strength variation observed in differently sized shale specimens.