期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Progress of microscopic thermoelectric effects studied by micro- and nano-thermometric techniques
1
作者 Xue Gong Ruijie Qian +2 位作者 Huanyi Xue Weikang Lu Zhenghua An 《Frontiers of physics》 SCIE CSCD 2022年第2期155-172,共18页
Heat dissipation is one of the most serious problems in modern integrated electronics with the continuously decreasing devices size. Large portion of the consumed power is inevitably dissipated inthe form of waste hea... Heat dissipation is one of the most serious problems in modern integrated electronics with the continuously decreasing devices size. Large portion of the consumed power is inevitably dissipated inthe form of waste heat which not only restricts the device energy-efficiency performance itself, butalso leads to severe environment problems and energy crisis. Thermoelectric Seebeck effect is a greenenergy-recycling method, while thermoelectric Peltier effect can be employed for heat management byactively cooling overheated devices, where passive cooling by heat conduction is not sufficiently enough.However, the technological applications of thermoelectricity are limited so far by their very low conversion efficiencies and lack of deep understanding of thermoelectricity in microscopic levels. Probingand managing the thermoelectricity is therefore fundamentally important particularly in nanoscale. Inthis short review, we will first briefly introduce the microscopic techniques for studying nanoscale thermoelectricity, focusing mainly on scanning thermal microscopy (SThM). SThM is a powerful tool formapping the lattice heat with nanometer spatial resolution and hence detecting the nanoscale thermaltransport and dissipation processes. Then we will review recent experiments utilizing these techniques to investigate thermoelectricity in various nanomaterial systems including both (two-material)heterojunctions and (single-material) homojunctions with tailored Seebeck coefficients, and also spinSeebeck and Peltier effects in magnetic materials. Next, we will provide a perspective on the promisingapplications of our recently developed Scanning Noise Microscope (SNoiM) for directly probing thenon-equilibrium transporting hot charges (instead of lattice heat) in thermoelectric devices. SNoiMtogether with SThM are expected to be able to provide more complete and comprehensive understanding to the microscopic mechanisms in thermoelectrics. Finally, we make a conclusion and outlook onthe future development of microscopic studies in thermoelectrics. 展开更多
关键词 scanning thermal microscope(SThM) scanning noise microscope(SNoiM) thermoelectric effects Seebeck coefficient Peltier cooling spin caloritronics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部