Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic struc...Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance.展开更多
We demonstrate a home-built electrochemical scanning tunneling microscope (ECSTM). The ECSTM exhibits highly stable performance. The drifting rates in XY and Z directions of the ECSTM are about 67 and 55.6 pm/min, r...We demonstrate a home-built electrochemical scanning tunneling microscope (ECSTM). The ECSTM exhibits highly stable performance. The drifting rates in XY and Z directions of the ECSTM are about 67 and 55.6 pm/min, respectively. Moreover, a specially designed scanner unit successfully solves the well-known problem of large leakage current in high humidity atmosphere. The mechanical structure of the ECSTM is described in detail. The excellent performances of the system are demonstrated by the measured STM images (in copper sulfate solution), including clean and well-ordered large area morphology of Au(111) and the atomically resolved image of highly oriented pyrolytic graphite.展开更多
We present the design and performance of a home-built scanning tunneling microscope (STM), which is compact (66 mm tall and 25 mm in diameter), yet equipped with a 3D atomic precision piezoelectric motor in which ...We present the design and performance of a home-built scanning tunneling microscope (STM), which is compact (66 mm tall and 25 mm in diameter), yet equipped with a 3D atomic precision piezoelectric motor in which the Z coarse approach relies on a high simplic-ity friction-type walker (of our own invention) driven by an axially cut piezoelectric tube. The walker is vertically inserted in a piezoelectric scanner tube (PST) with its brim laying at on the PST end as the inertial slider (driven by the PST) for the XZ (sample plane) motion. The STM is designed to be capable of searching rare microscopic targets (defects, dopants, boundaries, nano-devices, etc.) in a macroscopic sample area (square millimeters) under extreme conditions (low temperatures, strong magnetic elds, etc.) in which it ts. It gives good atomic resolution images after scanning a highly oriented pyrolytic graphite sample in air at room temperature.展开更多
We present a homebuilt scanning tunneling microscope(STM)which employs an inner-wall polished sapphire guiding tube as a rail for the scanner to form a short tip-sample mechanical loop.The scanner is mounted on a squa...We present a homebuilt scanning tunneling microscope(STM)which employs an inner-wall polished sapphire guiding tube as a rail for the scanner to form a short tip-sample mechanical loop.The scanner is mounted on a square rod which is housed in the guiding tube and held by a spring strip.The stiff sapphire guiding tube allows the STM body to be made in a simple,compact and rigid form.Also the material of sapphire improves the thermal stability of the STM for its good thermal conductivity.To demonstrate the performance of the STM,high quality atomic-resolution STM images of high oriented pyrolytic graphite were given.展开更多
The influence of vibration is already one of main obstacles for improving the nano measuring accuracy.The techniques of anti-vibration,vibration isolation and vibration compensation become an important branch in nano ...The influence of vibration is already one of main obstacles for improving the nano measuring accuracy.The techniques of anti-vibration,vibration isolation and vibration compensation become an important branch in nano measuring field.Starting with the research of sensitivity to vibration of scanning tunneling microscope(STM),the theory,techniques and realization methods of nano vibration sensor based on tunnel effect are initially investigated,followed by developing the experimental devices.The experiments of the vibration detection and vibration compensation are carried out.The experimental results show that vibration sensor based on tunnel effect is characterized by high sensitivity,good frequency characteristic and the same vibratory response characteristic consistent with STM.展开更多
The plasmon-enhanced light emission of rutile TiO2(110) surface has been investigated by a low-temperature scanning tunneling microscope (STM). We found that the photon emission arises from the inelastic electron ...The plasmon-enhanced light emission of rutile TiO2(110) surface has been investigated by a low-temperature scanning tunneling microscope (STM). We found that the photon emission arises from the inelastic electron tunneling between the STM tip and the conduction band or defect states of TiO2(110). In contrast to the Au(111) surface, the maximum photon energy as a function of the bias voltage clearly deviates from the linear scaling behavior, suggesting the non-negligible effect of the STM tip on the band structure of TiO2. By performing differential conductance (dl/dV) measurements, it was revealed that such a deviation is not related to the tip-induced band bending, but is attributed to the image charge effect of the metal tip, which significantly shifts the band edges of the TiO2(110) towards the Femi level (EF) during the tunneling process. This work not only sheds new lights onto the understanding of plasmon-enhanced light emission of semiconductor surfaces, but also opens up a new avenue for engineering the plasmon-mediated interfacial charge transfer in molecular and semiconducting materials.展开更多
The solidification process of a conventional superalloy, IN718, was investigated by confocal scanning laser microscope (CSLM). The liquid fraction during solidification was obtained as a function of real time and te...The solidification process of a conventional superalloy, IN718, was investigated by confocal scanning laser microscope (CSLM). The liquid fraction during solidification was obtained as a function of real time and temperature in reference with the in-situ observation. The characteristics of L→γ transformation were analyzed and the γ growing rate of each stage was also calculated. Scheil equation was employed to predict the segregation behavior, and the predict results are in consistence with the experimental results. As a result, the confocal scanning laser microscope shows a great potential for solidification process research.展开更多
[Objective] The research aimed to provide reference for classification of pomegranate cultivars and studies of genetic relationship among pomegranate cultivars.[Method] The electron microscope scanning was used to com...[Objective] The research aimed to provide reference for classification of pomegranate cultivars and studies of genetic relationship among pomegranate cultivars.[Method] The electron microscope scanning was used to comparatively observe leaf epidermal structures of 4 pomegranate cultivars.[Result] The upper epidermal structures of 4 pomegranate cultivars were similar and showed reticular structure .However, the differences existed in lower epidermis,such as cell shape,cell size and arrangement mode of cell as well as stomatal density,while the structures of leaf vein in lower epidermis of 4 pomegranate cultivars were similar.[Conclusion] The research provided morphological references for studying heterosis of pomegranate to some extent.展开更多
[Objective]The experiment aimed to explore a new way for observing surface structure of Nostoc sphaeroides Kutzing. [Method] The scanning electron microscope was used to observe the epidermal ultrastructure of wild an...[Objective]The experiment aimed to explore a new way for observing surface structure of Nostoc sphaeroides Kutzing. [Method] The scanning electron microscope was used to observe the epidermal ultrastructure of wild and cultured Nostoc sphaeroides Kutzing. [ Result] The epidermis of wild and cultured Nostoc sphaeroides Kutzing showed mixture structure of fibril colloid which was reticular arranged. The difference between wild and cultured Nostoc sphaeroides Kutzing was that the outer epidermis of cultured Nostoc sphaeroides Kutzing had trichome distribution but the wild Nostoc sphaeroides Kutzing did not has such distribution. The obsevation results of under smaller than 10 μm by scanning electron microscope was touched thick and showed many folds and distortions. [ Conclusion] The scanning electron microscope was an effective way to study development of Nostoc sphaeroides Kutzing colony and it was worth popularizing.展开更多
[ Objective] The paper was to observe Helicotylenchus digonicus by scanning electron microscope (SEM). [ Method ] H. digonicus collected from Changxing of Zhejiang Province was observed under scanning electron micro...[ Objective] The paper was to observe Helicotylenchus digonicus by scanning electron microscope (SEM). [ Method ] H. digonicus collected from Changxing of Zhejiang Province was observed under scanning electron microscope, and its morphological structure was confmned under optical microscope. [ Resuit]The nematode specimens fixed by glutaraldehyde and osmium tetroxide and prepared by critical point drying were unmodified and unshrinkable with clear mor- phological structure, which could be scanned very well by scanning electron microscope. [ Conclusion ] The study provided reference for study and control of H. digonicus.展开更多
Nanocrystalline CdSe thin film prepared by chemical solution deposition was imaged in air with a scanning tunnelling microscope(STM). Scanning tunnelling current spectroscopy(STS) was taken at a fixed tip - sample sep...Nanocrystalline CdSe thin film prepared by chemical solution deposition was imaged in air with a scanning tunnelling microscope(STM). Scanning tunnelling current spectroscopy(STS) was taken at a fixed tip - sample separation. Tunnelling current(i) - voltage(v) curve and differential conductance spectrum show an n-type schottky rectifying behaviour and yield a direct measure of band gap energy. An increase of bandgap energy (1.8 - 2.1eV) was measured indicating energy quantization of this particular thin film.,展开更多
Chalkiness characters affect not only the grain appearance,milling,eating and cooking qualities but also the grain nutritional quality in rice,thus it is one of the most important traits in rice. It is very important ...Chalkiness characters affect not only the grain appearance,milling,eating and cooking qualities but also the grain nutritional quality in rice,thus it is one of the most important traits in rice. It is very important for us to investigate the relation of the chalkiness formation and the development of endosperm structure and starch granule of different rice varieties. Here,we have investigated the chalkiness characters such as chalkiness rate,chalkiness degree and chalkiness area in 15 japonica rice varieties from southern Henan. Furthermore,the endosperm structure and starch granules of rice grain were also observed with scanning electron microscope. The results showed that the 15 japonica varieties have a significantly linear relationship between the chalkiness rate and chalkiness degree. Among the varieties,the biggest difference is the chalkiness rate,the second is the chalkiness area,and the last is the chalkiness degree. Moreover,there is a certain correlation between the distribution of starch granules,the arrangement of endosperm cells and the occurrence of grain chalkiness in the different rice varieties. For the same variety,the starch granules of chalky and non-chalky grains have obvious difference,while the starch granules from the transparent part of chalky rice and non-chalky rice do not have significant difference. The results would provide useful references for the improvement of grain quality in rice.展开更多
It is observed by scanning tunneling microscopy (STM) that theadsorbed Benzotriazole (BTA) on copper is long in shape and has anirregular rectangle. The growth of BTA on copper is in the form ofpolymeric chain and mai...It is observed by scanning tunneling microscopy (STM) that theadsorbed Benzotriazole (BTA) on copper is long in shape and has anirregular rectangle. The growth of BTA on copper is in the form ofpolymeric chain and mainly in one dimension rather than twodimensions. The copper surface covered by BTA becomes flatter,smoother and the roughness was smaller than that of bare copper, sothe corrosion is largely decreased. However, many grooves can be seenbetween BTA polymeric chains in which corrosion may exist to adegree.展开更多
Recent understanding of the role of epigenetic regulation in health and disease has necessitated the development of newer and efficient methods to map the methylation pattern of target gene. In this article we report ...Recent understanding of the role of epigenetic regulation in health and disease has necessitated the development of newer and efficient methods to map the methylation pattern of target gene. In this article we report construction of a stage-scanning laser confocal microscope (SLCM) and associated protocol that determines the methylation status of target gene. We have adapted restricted Sanger’s sequencing where fluorescine labeled primers and dideoxy guanine fraction alone are used for target amplification and termination at cytosine positions. Amplified ssDNA bands are separated in 6% denaturing PAGE and scanned using SLCM to sequence the positions of methylated cytosines. We demonstrate that our me- thodology can detect < 100 femtomoles of DNA, and resolve the position of cytosine within ± 2 nucleotide. In a calibration run using a designer DNA of 99 bases, our methodology had resolved all the 11 cytosine positions of the DNA. We have further demonstrated the utility of apparatus by mapping methylation status in the Exon-1 region of a gene, E-Cadherin, in the plasma DNA sample of a healthy subject. We believe our approach constitute a low cost alternative to conventional DNA sequencers and can help develop methylation based DNA biomarkers for the diagnosis of disease and in therapeutics.展开更多
Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and f...Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field opti- cal microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization.展开更多
YbMnBi2 is a recently discovered time-reversal-symmetry breaking type-Ⅱ Weyl semimetal.However, as a representation of the new category of topological matters, the scanning tunneling microcopy(STM) results on such im...YbMnBi2 is a recently discovered time-reversal-symmetry breaking type-Ⅱ Weyl semimetal.However, as a representation of the new category of topological matters, the scanning tunneling microcopy(STM) results on such important material are still absent.Here, we report the STM investigations on the morphology of vacuum cleaved single crystalline YbMnBi2 samples.A hill and valley type of topography is observed on the YbMnBi2 surface, which is consistent with the non-layer nature of its crystal structure.Analysis of STM images yields the information of the index of the vicinal surface.Our results here lay a playground of future atomic scale research on YbMnBi2.展开更多
To investigate the bacterial colonization on zirconium oxide and titanium surfaces in vivo quantitatively using a confocal laser scanning microscope (CLSM). Ten samples of zirconium oxide ceramic and commercially pu...To investigate the bacterial colonization on zirconium oxide and titanium surfaces in vivo quantitatively using a confocal laser scanning microscope (CLSM). Ten samples of zirconium oxide ceramic and commercially pure titanium were fabricated and polished using silicon carbide abrasive paper. One sample from each group was evaluated topographic pattern under a scanning electron microscope. One sample from each group was to evaluate roughness using a profilometer. Eight volunteers were selected. The samples were cemented at the buccal surfaces of upper first molars. All samples were removed after 48 hours, immersed in SYTO-9 and propidium iodide fluorescent to stain for adherent bacteria and obseIved with CLSM. Fewer bacteria were observed in zirconia group than titanium group. However, there was no statistical difference between two groups. The experimental results demonstrate that zirconium oxide may be considered as a promising material for dental implant abutments.展开更多
Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) were performed on monolayer film of NiTPP supported on Au(111) under ultrahigh vacuum (UHV) conditions. The constant current STM im...Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) were performed on monolayer film of NiTPP supported on Au(111) under ultrahigh vacuum (UHV) conditions. The constant current STM images show remarkable bias dependence. High resolution STM data clearly show the individual NiTPP molecules and allow easy differentiation between NiTPP and CoTPP reported before. Scanning tunneling spectra, as a function of molecule-tip separation, were acquired over a range of tip motion of 0.42 nm. Spectra do not show the variation in band splitting with tip distance. It appears for molecules such as NiTPP that the average potential at the molecule is essentially the same at the same metal substrate. For molecules of the height of NiTPP, the scanning tunneling spectra should give reliable occupied and unoccupied orbital energies over a wide range of tip-molecule distances.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12374196,92165201,11634011,and 22109153)the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302800)+4 种基金the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-046)the Fundamental Research Funds for the Central Universities (Grant Nos.WK3510000006 and WK3430000003)the Fund of Anhui Initiative in Quantum Information Technologies (Grant No.AHY170000)the University Synergy Innovation Program of Anhui Province,China (Grant No.GXXT-2022-008)the National Synchrotron Radiation Laboratory Joint Funds of University of Science and Technology of China (Grant No.KY2060000241)。
文摘Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance.
文摘We demonstrate a home-built electrochemical scanning tunneling microscope (ECSTM). The ECSTM exhibits highly stable performance. The drifting rates in XY and Z directions of the ECSTM are about 67 and 55.6 pm/min, respectively. Moreover, a specially designed scanner unit successfully solves the well-known problem of large leakage current in high humidity atmosphere. The mechanical structure of the ECSTM is described in detail. The excellent performances of the system are demonstrated by the measured STM images (in copper sulfate solution), including clean and well-ordered large area morphology of Au(111) and the atomically resolved image of highly oriented pyrolytic graphite.
文摘We present the design and performance of a home-built scanning tunneling microscope (STM), which is compact (66 mm tall and 25 mm in diameter), yet equipped with a 3D atomic precision piezoelectric motor in which the Z coarse approach relies on a high simplic-ity friction-type walker (of our own invention) driven by an axially cut piezoelectric tube. The walker is vertically inserted in a piezoelectric scanner tube (PST) with its brim laying at on the PST end as the inertial slider (driven by the PST) for the XZ (sample plane) motion. The STM is designed to be capable of searching rare microscopic targets (defects, dopants, boundaries, nano-devices, etc.) in a macroscopic sample area (square millimeters) under extreme conditions (low temperatures, strong magnetic elds, etc.) in which it ts. It gives good atomic resolution images after scanning a highly oriented pyrolytic graphite sample in air at room temperature.
基金supported by the National Key RD Program of China (No.2017YFA0402903 and No.2016YFA0401003)National Natural Science Foundation of China (No.21505139, No.51627901,and No.11374278)+1 种基金Chinese Academy of Sciences Scientific Research Equipment (No.YZ201628)National Science Foundation for Young Scientists of China (No.11504339)
文摘We present a homebuilt scanning tunneling microscope(STM)which employs an inner-wall polished sapphire guiding tube as a rail for the scanner to form a short tip-sample mechanical loop.The scanner is mounted on a square rod which is housed in the guiding tube and held by a spring strip.The stiff sapphire guiding tube allows the STM body to be made in a simple,compact and rigid form.Also the material of sapphire improves the thermal stability of the STM for its good thermal conductivity.To demonstrate the performance of the STM,high quality atomic-resolution STM images of high oriented pyrolytic graphite were given.
文摘The influence of vibration is already one of main obstacles for improving the nano measuring accuracy.The techniques of anti-vibration,vibration isolation and vibration compensation become an important branch in nano measuring field.Starting with the research of sensitivity to vibration of scanning tunneling microscope(STM),the theory,techniques and realization methods of nano vibration sensor based on tunnel effect are initially investigated,followed by developing the experimental devices.The experiments of the vibration detection and vibration compensation are carried out.The experimental results show that vibration sensor based on tunnel effect is characterized by high sensitivity,good frequency characteristic and the same vibratory response characteristic consistent with STM.
基金Project supported by the National Key R&D Program of China(Grant Nos.2016YFA0300901 and 2017YFA0205003)the National Natural Science Foundation of China(Grant Nos.11634001 and 21725302)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB08-1)
文摘The plasmon-enhanced light emission of rutile TiO2(110) surface has been investigated by a low-temperature scanning tunneling microscope (STM). We found that the photon emission arises from the inelastic electron tunneling between the STM tip and the conduction band or defect states of TiO2(110). In contrast to the Au(111) surface, the maximum photon energy as a function of the bias voltage clearly deviates from the linear scaling behavior, suggesting the non-negligible effect of the STM tip on the band structure of TiO2. By performing differential conductance (dl/dV) measurements, it was revealed that such a deviation is not related to the tip-induced band bending, but is attributed to the image charge effect of the metal tip, which significantly shifts the band edges of the TiO2(110) towards the Femi level (EF) during the tunneling process. This work not only sheds new lights onto the understanding of plasmon-enhanced light emission of semiconductor surfaces, but also opens up a new avenue for engineering the plasmon-mediated interfacial charge transfer in molecular and semiconducting materials.
基金Project(08dj1400402) supported by the Major Program for the Fundamental Research of Shanghai Committee of Science and Technology, China
文摘The solidification process of a conventional superalloy, IN718, was investigated by confocal scanning laser microscope (CSLM). The liquid fraction during solidification was obtained as a function of real time and temperature in reference with the in-situ observation. The characteristics of L→γ transformation were analyzed and the γ growing rate of each stage was also calculated. Scheil equation was employed to predict the segregation behavior, and the predict results are in consistence with the experimental results. As a result, the confocal scanning laser microscope shows a great potential for solidification process research.
文摘[Objective] The research aimed to provide reference for classification of pomegranate cultivars and studies of genetic relationship among pomegranate cultivars.[Method] The electron microscope scanning was used to comparatively observe leaf epidermal structures of 4 pomegranate cultivars.[Result] The upper epidermal structures of 4 pomegranate cultivars were similar and showed reticular structure .However, the differences existed in lower epidermis,such as cell shape,cell size and arrangement mode of cell as well as stomatal density,while the structures of leaf vein in lower epidermis of 4 pomegranate cultivars were similar.[Conclusion] The research provided morphological references for studying heterosis of pomegranate to some extent.
文摘[Objective]The experiment aimed to explore a new way for observing surface structure of Nostoc sphaeroides Kutzing. [Method] The scanning electron microscope was used to observe the epidermal ultrastructure of wild and cultured Nostoc sphaeroides Kutzing. [ Result] The epidermis of wild and cultured Nostoc sphaeroides Kutzing showed mixture structure of fibril colloid which was reticular arranged. The difference between wild and cultured Nostoc sphaeroides Kutzing was that the outer epidermis of cultured Nostoc sphaeroides Kutzing had trichome distribution but the wild Nostoc sphaeroides Kutzing did not has such distribution. The obsevation results of under smaller than 10 μm by scanning electron microscope was touched thick and showed many folds and distortions. [ Conclusion] The scanning electron microscope was an effective way to study development of Nostoc sphaeroides Kutzing colony and it was worth popularizing.
文摘[ Objective] The paper was to observe Helicotylenchus digonicus by scanning electron microscope (SEM). [ Method ] H. digonicus collected from Changxing of Zhejiang Province was observed under scanning electron microscope, and its morphological structure was confmned under optical microscope. [ Resuit]The nematode specimens fixed by glutaraldehyde and osmium tetroxide and prepared by critical point drying were unmodified and unshrinkable with clear mor- phological structure, which could be scanned very well by scanning electron microscope. [ Conclusion ] The study provided reference for study and control of H. digonicus.
文摘Nanocrystalline CdSe thin film prepared by chemical solution deposition was imaged in air with a scanning tunnelling microscope(STM). Scanning tunnelling current spectroscopy(STS) was taken at a fixed tip - sample separation. Tunnelling current(i) - voltage(v) curve and differential conductance spectrum show an n-type schottky rectifying behaviour and yield a direct measure of band gap energy. An increase of bandgap energy (1.8 - 2.1eV) was measured indicating energy quantization of this particular thin film.,
基金Supported by Key Project of Science and Technology in Henan Province(152102110100,152102110036)National Natural Science Foundation of China(U1604110,U1404319,31270727,31600992)+3 种基金Nanhu Scholars Program for Young Scholars of XYNU(2016056)Major Science and Technology Project in Henan Province(121100110200)Students Scientific Research Fund of Xinyang Normal University(2015-DXS-158)Fund of Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains(2016020)
文摘Chalkiness characters affect not only the grain appearance,milling,eating and cooking qualities but also the grain nutritional quality in rice,thus it is one of the most important traits in rice. It is very important for us to investigate the relation of the chalkiness formation and the development of endosperm structure and starch granule of different rice varieties. Here,we have investigated the chalkiness characters such as chalkiness rate,chalkiness degree and chalkiness area in 15 japonica rice varieties from southern Henan. Furthermore,the endosperm structure and starch granules of rice grain were also observed with scanning electron microscope. The results showed that the 15 japonica varieties have a significantly linear relationship between the chalkiness rate and chalkiness degree. Among the varieties,the biggest difference is the chalkiness rate,the second is the chalkiness area,and the last is the chalkiness degree. Moreover,there is a certain correlation between the distribution of starch granules,the arrangement of endosperm cells and the occurrence of grain chalkiness in the different rice varieties. For the same variety,the starch granules of chalky and non-chalky grains have obvious difference,while the starch granules from the transparent part of chalky rice and non-chalky rice do not have significant difference. The results would provide useful references for the improvement of grain quality in rice.
基金Supported by Study Foundation of the Hong Kong Polytechnic University.
文摘It is observed by scanning tunneling microscopy (STM) that theadsorbed Benzotriazole (BTA) on copper is long in shape and has anirregular rectangle. The growth of BTA on copper is in the form ofpolymeric chain and mainly in one dimension rather than twodimensions. The copper surface covered by BTA becomes flatter,smoother and the roughness was smaller than that of bare copper, sothe corrosion is largely decreased. However, many grooves can be seenbetween BTA polymeric chains in which corrosion may exist to adegree.
文摘Recent understanding of the role of epigenetic regulation in health and disease has necessitated the development of newer and efficient methods to map the methylation pattern of target gene. In this article we report construction of a stage-scanning laser confocal microscope (SLCM) and associated protocol that determines the methylation status of target gene. We have adapted restricted Sanger’s sequencing where fluorescine labeled primers and dideoxy guanine fraction alone are used for target amplification and termination at cytosine positions. Amplified ssDNA bands are separated in 6% denaturing PAGE and scanned using SLCM to sequence the positions of methylated cytosines. We demonstrate that our me- thodology can detect < 100 femtomoles of DNA, and resolve the position of cytosine within ± 2 nucleotide. In a calibration run using a designer DNA of 99 bases, our methodology had resolved all the 11 cytosine positions of the DNA. We have further demonstrated the utility of apparatus by mapping methylation status in the Exon-1 region of a gene, E-Cadherin, in the plasma DNA sample of a healthy subject. We believe our approach constitute a low cost alternative to conventional DNA sequencers and can help develop methylation based DNA biomarkers for the diagnosis of disease and in therapeutics.
基金supported by the National Natural Science Foundation of China(Grant Nos.61177089,61227014,and 60978047)
文摘Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field opti- cal microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization.
基金Project supported by the “Shuguang Program” from Shanghai Education Development Foundation and Shanghai Municipal Education Commission,Ministry of Science and Technology of China(Grant Nos.2016YFA0301003 and 2016YFA0300403)the National Natural Science Foundation of China(Grant Nos.11521404,11634009,11874256,11574202,11874258,11790313,11674226,U1632102,11674222,and 11861161003)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)
文摘YbMnBi2 is a recently discovered time-reversal-symmetry breaking type-Ⅱ Weyl semimetal.However, as a representation of the new category of topological matters, the scanning tunneling microcopy(STM) results on such important material are still absent.Here, we report the STM investigations on the morphology of vacuum cleaved single crystalline YbMnBi2 samples.A hill and valley type of topography is observed on the YbMnBi2 surface, which is consistent with the non-layer nature of its crystal structure.Analysis of STM images yields the information of the index of the vicinal surface.Our results here lay a playground of future atomic scale research on YbMnBi2.
基金Funded by the National Natural Science Foundation of China(No.81271179)the Scientific Research Foundation for Returned Scholars,Ministry of Education of China(No.(2011)1568)the Science and Technology Program of Shanghai Pudong New Area Health Bureau(No.PW2010A-14)
文摘To investigate the bacterial colonization on zirconium oxide and titanium surfaces in vivo quantitatively using a confocal laser scanning microscope (CLSM). Ten samples of zirconium oxide ceramic and commercially pure titanium were fabricated and polished using silicon carbide abrasive paper. One sample from each group was evaluated topographic pattern under a scanning electron microscope. One sample from each group was to evaluate roughness using a profilometer. Eight volunteers were selected. The samples were cemented at the buccal surfaces of upper first molars. All samples were removed after 48 hours, immersed in SYTO-9 and propidium iodide fluorescent to stain for adherent bacteria and obseIved with CLSM. Fewer bacteria were observed in zirconia group than titanium group. However, there was no statistical difference between two groups. The experimental results demonstrate that zirconium oxide may be considered as a promising material for dental implant abutments.
基金This work was supported by the Excellent Scientist Program of South China University of Technology (324-D60090), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and the National Natural Science Foundation of China (20643001).
文摘Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) were performed on monolayer film of NiTPP supported on Au(111) under ultrahigh vacuum (UHV) conditions. The constant current STM images show remarkable bias dependence. High resolution STM data clearly show the individual NiTPP molecules and allow easy differentiation between NiTPP and CoTPP reported before. Scanning tunneling spectra, as a function of molecule-tip separation, were acquired over a range of tip motion of 0.42 nm. Spectra do not show the variation in band splitting with tip distance. It appears for molecules such as NiTPP that the average potential at the molecule is essentially the same at the same metal substrate. For molecules of the height of NiTPP, the scanning tunneling spectra should give reliable occupied and unoccupied orbital energies over a wide range of tip-molecule distances.