A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The disconti...A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The discontinuity arises due to the floating of two semi-infinite inertial surfaces of different surface densities. Applying Green's second identity to the potential functions and appropriate Green's functions, this problem is reduced to solving two coupled Fredholm integral equations with regular kernels. The solutions to these integral equations are used to determine the reflection and the transmission coefficients. The results for the reflection coefficient are presented graphically and are compared to those obtained earlier using other research methods. It is observed from the graphs that the results computed from the present analysis match exactly with the previous results.展开更多
An iterative physical optics(IPO) model is proposed to solve extra large scale electric electromagnetic(EM) scattering from randomly rough surfaces. In order to accelerate the convergence of the IPO model, the for...An iterative physical optics(IPO) model is proposed to solve extra large scale electric electromagnetic(EM) scattering from randomly rough surfaces. In order to accelerate the convergence of the IPO model, the forward-backward methodology and its modification with underrelaxation iteration are developed to simulate the rough surface scattering; the local iteration methodology and the fast far field approximation(Fa FFA) in the matrix-vector product are proposed to reduce greatly the computational complexity. These techniques make Monte Carlo simulations possible. Thus, the average Doppler spectra of backscattered signals obtained from the simulations are compared for different incident angles and sea states. In particular, the simulations show a broadening of the Doppler spectra for a more complicated sea state at a low grazing angle(LGA).展开更多
Two-dimensional scalar equation for the displacement of steady cross-plane shear (SH) waves in homogeneous and transversely isotropic media like unidirectional fibrous com-posites is given. Then, thrbugh a simple coor...Two-dimensional scalar equation for the displacement of steady cross-plane shear (SH) waves in homogeneous and transversely isotropic media like unidirectional fibrous com-posites is given. Then, thrbugh a simple coordinate system transform, the scalar equation is standardized into a Helmholtz equation. Corresponding integral equations are derived for the scattering problems and boundary element method (BEM) is used to calculate the scattered fields of arbitrarily shaped obstacles with both soft and rigid boudary conditions numerically.A discussion is given on the numerical results which is mainly focused on the influence of the a-nisotropy of the media to the directivity of the scattered fields by circular cylindrical voids.展开更多
基金Partially Supported by a DST Research Project to RG(No.SR/FTP/MS-020/2010)
文摘A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The discontinuity arises due to the floating of two semi-infinite inertial surfaces of different surface densities. Applying Green's second identity to the potential functions and appropriate Green's functions, this problem is reduced to solving two coupled Fredholm integral equations with regular kernels. The solutions to these integral equations are used to determine the reflection and the transmission coefficients. The results for the reflection coefficient are presented graphically and are compared to those obtained earlier using other research methods. It is observed from the graphs that the results computed from the present analysis match exactly with the previous results.
基金supported by the National Natural Science Foundation of China(61372033)
文摘An iterative physical optics(IPO) model is proposed to solve extra large scale electric electromagnetic(EM) scattering from randomly rough surfaces. In order to accelerate the convergence of the IPO model, the forward-backward methodology and its modification with underrelaxation iteration are developed to simulate the rough surface scattering; the local iteration methodology and the fast far field approximation(Fa FFA) in the matrix-vector product are proposed to reduce greatly the computational complexity. These techniques make Monte Carlo simulations possible. Thus, the average Doppler spectra of backscattered signals obtained from the simulations are compared for different incident angles and sea states. In particular, the simulations show a broadening of the Doppler spectra for a more complicated sea state at a low grazing angle(LGA).
文摘Two-dimensional scalar equation for the displacement of steady cross-plane shear (SH) waves in homogeneous and transversely isotropic media like unidirectional fibrous com-posites is given. Then, thrbugh a simple coordinate system transform, the scalar equation is standardized into a Helmholtz equation. Corresponding integral equations are derived for the scattering problems and boundary element method (BEM) is used to calculate the scattered fields of arbitrarily shaped obstacles with both soft and rigid boudary conditions numerically.A discussion is given on the numerical results which is mainly focused on the influence of the a-nisotropy of the media to the directivity of the scattered fields by circular cylindrical voids.