An analytic massive total cross section of photon proton scattering is derived, which has geometric scaling. A geometric scaling is used to perform a global analysis of the deep inelastic scattering data on inclusive ...An analytic massive total cross section of photon proton scattering is derived, which has geometric scaling. A geometric scaling is used to perform a global analysis of the deep inelastic scattering data on inclusive structure function F2 measured in lepton-hadron scattering experiments at small values of Bjorken x. It is shown that the descriptions of the inclusive structure function F2 and longitudinal structure function FL are improved with the massive analytic structure function, which may imply the gluon saturation effect dominating the parton evolution process at HERA. The inclusion of the heavy quarks prevent the divergence of the lepton-hadron cross section, which plays a significant role in the description of the photoproduction region.展开更多
We study the effects of running coupling and gluon number fluctuations in the latest diffractive deep inelastic scattering data. It is found that the description of the data is improved once the running coupling and g...We study the effects of running coupling and gluon number fluctuations in the latest diffractive deep inelastic scattering data. It is found that the description of the data is improved once the running coupling and gluon number fluctuations are included with x2/d.o.f. = 0.867, x2/d.o.f. = 0.923 and x2/d.o.f. = 0.878 for three different groups of experimental data. The values of diffusive coefficient subtracted from the fit are smaller than the ones obtained by considering only the gluon number fluctuations in our previous studies. The smaller values of the diffusive coefficient are in agreement with the theoretical predictions, where the gluon number fluctuations are suppressed by the running coupling which leads to smaller values of the diffusive coefficient.展开更多
Although the sonic soot cleaning techniques have been applied in boilers in power plants, petrochemical works and general industries world wide, most of the correlated basic problems have not been well solved yet. By ...Although the sonic soot cleaning techniques have been applied in boilers in power plants, petrochemical works and general industries world wide, most of the correlated basic problems have not been well solved yet. By using Helmholtz integral equation, sound wave scattered by heat-exchanger tubes is numerically calculated. Sound field distribution characteristics on the tube surfaces and around the tube group is obtained. The results can be applied to the development of sonic soot cleaning techniques in boilers.展开更多
Taking an elastic sphere for example, the acoustic scattering of a submerged object illuminated by a Bessel beam is studied. The partial wave series representation for an elastic sphere has been extended to the case o...Taking an elastic sphere for example, the acoustic scattering of a submerged object illuminated by a Bessel beam is studied. The partial wave series representation for an elastic sphere has been extended to the case of Bessel beam scattering. Referring to the scattering of a plane wave, the peak to peak intervals in backscattering form function caused by the interference of the specular wave and the Franz wave have been analyzed in geometry. The influence of the characteristic parameterβ of a Bessel beam on the peak to peak intervals has been indicated, and a predictive formula of the the first time. Meanwhile the elastic scattering peak to peak intervals has been established for of each partial wave has been separated based on the Resonance Scattering Theory. The influence of β on the pure elastic resonance has been studied further. The results show that selecting specific β can reduce the contribution of a certain partial wave. Therefore the resonance at the corresponding frequency and the nearby region in the backscattering is remarkably suppressed. The work of this paper could be helpful to the applications of Bessel beams on the acoustic detection of submerged objects.展开更多
We investigate the influence of population density on radio-frequency inter- ference (RFI) affecting radio astronomy. We use a new method to quantify the thresh- old of population density in order to determine the m...We investigate the influence of population density on radio-frequency inter- ference (RFI) affecting radio astronomy. We use a new method to quantify the thresh- old of population density in order to determine the most suitable lower limit for site selection of a radio quiet zone (RQZ). We found that there is a certain trend in the population density-RFI graph that increases rapidly at lower values and slows down to almost fiat at higher values. We use this trend to identify the thresholds for pop- ulation density that produce RFI. Using this method we found that, for frequencies up to 2.8 GHz, low, medium and high population densities affecting radio astronomy are below 150 ppl km-2, between i50 ppl km-2 and 5125 ppl km-~, and above 5125 ppl km-2 respectively. We also investigate the effect of population density on the environment of RFI in three astronomical windows, namely the deuterium, hydro- gen and hydroxyl lines. We find that a polynomial fitting to the population density produces a similar trend, giving similar thresholds for the effect of population density. We then compare our interference values to the standard threshold levels used by the International Telecommunication Union within these astronomical windows.展开更多
In this paper,we carried out a combination of permanent scatterer and quasi permanent scatterer time-series InSAR image analyses to extract geometric information over the area of the Three Gorges Dam.For the first tim...In this paper,we carried out a combination of permanent scatterer and quasi permanent scatterer time-series InSAR image analyses to extract geometric information over the area of the Three Gorges Dam.For the first time,we measured and analyzed the deformation of the Three Gorges Dam and its surrounding area using 40 SAR images acquired from 2003 to 2008.Our results indicate that the temporal deformation of the left part of the dam has ceased and that the deformation of the dam was influenced by the changing level of the Yangtze River.Seasonal deformation due to varying temperature is also observed.The obtained results agree well with the published results of the Three Gorges Dam deformation obtained by employing conventional survey methods.We also found that there is an area of abnormal subsidence near Zigui County.This paper demonstrates the potential of time-series InSAR image analysis in the monitoring of dam stability and measurement of subsidence.展开更多
Flow cytometry(FCM)is a powerful technique for single-bacteria analysis via simultaneous light-scattering and fluorescence measurements.By offering high-throughput,quantitative,and multiparameter analysis at the singl...Flow cytometry(FCM)is a powerful technique for single-bacteria analysis via simultaneous light-scattering and fluorescence measurements.By offering high-throughput,quantitative,and multiparameter analysis at the single-cell level,FCM has gained an increased popularity in microbiological research,food safety monitoring,water quality control,and clinical diagnosis.Here we will review the recent applications of flow cytometry in areas such as(1)total bacterial cell count,(2)bacterial viability analysis,(3)specific bacterial detection and identification,(4)characterization of physiological changes under environmental perturbations,and(5)biological function studies.Nevertheless,despite these widespread applications,challenges still remain for the detection of small sizes of bacteria and biochemical features that cannot be brightly stained via fluorescence.Recent improvement in FCM instrumentation will be discussed,and particularly the development of high sensitivity flow cytometry for advanced analysis of single bacterial cells will be highlighted.展开更多
In this Letter, the surface-enhanced Raman scattering(SERS) signal of early breast cancer(BRC) patient serum is obtained by a composite silver nanoparticles(Ag NPs) PSi Bragg reflector SERS substrate. Based on these a...In this Letter, the surface-enhanced Raman scattering(SERS) signal of early breast cancer(BRC) patient serum is obtained by a composite silver nanoparticles(Ag NPs) PSi Bragg reflector SERS substrate. Based on these advantages, the serum SERS signals of 30 normal people and 30 early BRC patients were detected by this substrate. After a baseline correction of the experimental data, principal component analysis and linear discriminant analysis were used to complete the data processing. The results showed that the diagnostic accuracy, specificity,and sensitivity of the composite Ag NPs PSi Bragg reflector SERS substrate were 95%, 96.7%, and 93.3%, respectively. The results of this exploratory study prove that the detection of early BRC serum based on a composite Ag NPs PSi Bragg reflector SERS substrate is with a stable strong SERS signal, and an unmarked and noninvasive BRC diagnosis technology. In the future, this technology can serve as a noninvasive clinical tool to detect cancer diseases and have a considerable impact on clinical medical detection.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11305040,11375071 and 11447203the Education Department of Guizhou Province Innovation Talent Fund under Grant No[2015]5508+2 种基金the Education Department of Guizhou Province Innovation Team Fund under Grant No[2014]35the Guizhou Province Science Technology Foundation under Grant No[2015]2114the Guizhou Province Innovation Talent Team Fund under Grant No[2015]4015
文摘An analytic massive total cross section of photon proton scattering is derived, which has geometric scaling. A geometric scaling is used to perform a global analysis of the deep inelastic scattering data on inclusive structure function F2 measured in lepton-hadron scattering experiments at small values of Bjorken x. It is shown that the descriptions of the inclusive structure function F2 and longitudinal structure function FL are improved with the massive analytic structure function, which may imply the gluon saturation effect dominating the parton evolution process at HERA. The inclusion of the heavy quarks prevent the divergence of the lepton-hadron cross section, which plays a significant role in the description of the photoproduction region.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11305040,11505036 and 11447203the Education Department of Guizhou Province Talent Fund under Grant No[2015]5508the Science and Technology Department of Guizhou Province Fund under Grant Nos[2015]2114 and [2014]7053
文摘We study the effects of running coupling and gluon number fluctuations in the latest diffractive deep inelastic scattering data. It is found that the description of the data is improved once the running coupling and gluon number fluctuations are included with x2/d.o.f. = 0.867, x2/d.o.f. = 0.923 and x2/d.o.f. = 0.878 for three different groups of experimental data. The values of diffusive coefficient subtracted from the fit are smaller than the ones obtained by considering only the gluon number fluctuations in our previous studies. The smaller values of the diffusive coefficient are in agreement with the theoretical predictions, where the gluon number fluctuations are suppressed by the running coupling which leads to smaller values of the diffusive coefficient.
文摘Although the sonic soot cleaning techniques have been applied in boilers in power plants, petrochemical works and general industries world wide, most of the correlated basic problems have not been well solved yet. By using Helmholtz integral equation, sound wave scattered by heat-exchanger tubes is numerically calculated. Sound field distribution characteristics on the tube surfaces and around the tube group is obtained. The results can be applied to the development of sonic soot cleaning techniques in boilers.
基金supported by the National Nature Science Foundation of China(40706019)
文摘Taking an elastic sphere for example, the acoustic scattering of a submerged object illuminated by a Bessel beam is studied. The partial wave series representation for an elastic sphere has been extended to the case of Bessel beam scattering. Referring to the scattering of a plane wave, the peak to peak intervals in backscattering form function caused by the interference of the specular wave and the Franz wave have been analyzed in geometry. The influence of the characteristic parameterβ of a Bessel beam on the peak to peak intervals has been indicated, and a predictive formula of the the first time. Meanwhile the elastic scattering peak to peak intervals has been established for of each partial wave has been separated based on the Resonance Scattering Theory. The influence of β on the pure elastic resonance has been studied further. The results show that selecting specific β can reduce the contribution of a certain partial wave. Therefore the resonance at the corresponding frequency and the nearby region in the backscattering is remarkably suppressed. The work of this paper could be helpful to the applications of Bessel beams on the acoustic detection of submerged objects.
基金made possible by the usage of the University of Malaya’s grants UMRG(RG118-10AFR),IPPP(PV025-2011A)and HIR(H-21001-F000028)Universiti Sultan Zainal Abidin(UniSZA)and the Ministry of Higher Education(MOHE)for their sponsorship
文摘We investigate the influence of population density on radio-frequency inter- ference (RFI) affecting radio astronomy. We use a new method to quantify the thresh- old of population density in order to determine the most suitable lower limit for site selection of a radio quiet zone (RQZ). We found that there is a certain trend in the population density-RFI graph that increases rapidly at lower values and slows down to almost fiat at higher values. We use this trend to identify the thresholds for pop- ulation density that produce RFI. Using this method we found that, for frequencies up to 2.8 GHz, low, medium and high population densities affecting radio astronomy are below 150 ppl km-2, between i50 ppl km-2 and 5125 ppl km-~, and above 5125 ppl km-2 respectively. We also investigate the effect of population density on the environment of RFI in three astronomical windows, namely the deuterium, hydro- gen and hydroxyl lines. We find that a polynomial fitting to the population density produces a similar trend, giving similar thresholds for the effect of population density. We then compare our interference values to the standard threshold levels used by the International Telecommunication Union within these astronomical windows.
基金supported by National Basic Research Program of China (Grant Nos. 2007CB714405, 2006CB701300)National Natural Science Foundation of China (Grant No. 40721001)Three Gorges Region Geologic Disaster Protection Major Research Program (Grant No. SXKY3-6-4)
文摘In this paper,we carried out a combination of permanent scatterer and quasi permanent scatterer time-series InSAR image analyses to extract geometric information over the area of the Three Gorges Dam.For the first time,we measured and analyzed the deformation of the Three Gorges Dam and its surrounding area using 40 SAR images acquired from 2003 to 2008.Our results indicate that the temporal deformation of the left part of the dam has ceased and that the deformation of the dam was influenced by the changing level of the Yangtze River.Seasonal deformation due to varying temperature is also observed.The obtained results agree well with the published results of the Three Gorges Dam deformation obtained by employing conventional survey methods.We also found that there is an area of abnormal subsidence near Zigui County.This paper demonstrates the potential of time-series InSAR image analysis in the monitoring of dam stability and measurement of subsidence.
基金the National Key Basic Research Program of China(2013CB933703)the National Natural Science Foundation of China(91313302,21105082,21225523,21472158,21027010,21521004)the Program for Changjiang Scholars and Innovative Research Team in University(IRT13036)
文摘Flow cytometry(FCM)is a powerful technique for single-bacteria analysis via simultaneous light-scattering and fluorescence measurements.By offering high-throughput,quantitative,and multiparameter analysis at the single-cell level,FCM has gained an increased popularity in microbiological research,food safety monitoring,water quality control,and clinical diagnosis.Here we will review the recent applications of flow cytometry in areas such as(1)total bacterial cell count,(2)bacterial viability analysis,(3)specific bacterial detection and identification,(4)characterization of physiological changes under environmental perturbations,and(5)biological function studies.Nevertheless,despite these widespread applications,challenges still remain for the detection of small sizes of bacteria and biochemical features that cannot be brightly stained via fluorescence.Recent improvement in FCM instrumentation will be discussed,and particularly the development of high sensitivity flow cytometry for advanced analysis of single bacterial cells will be highlighted.
基金the National Natural Science Foundation of China (Nos. 61665012,61575168,61765014)the International Science Cooperation Project of the Ministry of Education of the People’s Republic of China (No. 2016–2196)the Reserve Talents Project of National High-level Personnel of the Special Support Program (No. QN2016YX0324)。
文摘In this Letter, the surface-enhanced Raman scattering(SERS) signal of early breast cancer(BRC) patient serum is obtained by a composite silver nanoparticles(Ag NPs) PSi Bragg reflector SERS substrate. Based on these advantages, the serum SERS signals of 30 normal people and 30 early BRC patients were detected by this substrate. After a baseline correction of the experimental data, principal component analysis and linear discriminant analysis were used to complete the data processing. The results showed that the diagnostic accuracy, specificity,and sensitivity of the composite Ag NPs PSi Bragg reflector SERS substrate were 95%, 96.7%, and 93.3%, respectively. The results of this exploratory study prove that the detection of early BRC serum based on a composite Ag NPs PSi Bragg reflector SERS substrate is with a stable strong SERS signal, and an unmarked and noninvasive BRC diagnosis technology. In the future, this technology can serve as a noninvasive clinical tool to detect cancer diseases and have a considerable impact on clinical medical detection.