期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Diffraction of SH-waves by topographic features in a layered transversely isotropic half-space 被引量:5
1
作者 Ba Zhenning Liang Jianwen Zhang Yanju 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第1期11-22,共12页
Abstract: The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane ... Abstract: The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories. 展开更多
关键词 wave scattering and diffraction Green's function transversely isotropic SH-WAVES indirect boundaryelement method
下载PDF
Scattering of SH waves by a scalene triangular hill with a shallow cavity in half-space
2
作者 Sun Yingchao Yang Zailin +1 位作者 Yang Yong Wang Guangyi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第4期877-897,共21页
In this study,a theoretical approach is used to investigate the scattering problem of circular holes under a scalene triangle on the surface.The wave displacement function is obtained by solving the Helmholtz equation... In this study,a theoretical approach is used to investigate the scattering problem of circular holes under a scalene triangle on the surface.The wave displacement function is obtained by solving the Helmholtz equation that meets the zero-stress boundary conditions by adopting the method of separation of variables.Based on the complex function,multi-polar coordinate method,and region-matching technique,algebraic equations are established at auxiliary boundaries and free boundaries conditions in a complex domain.The auxiliary circle is used to solve the singularity of the reflex angle at the triangle corner.Then,according to sample statistics,the least squares method is used instead of the Fourier expansion method to solve the undetermined coefficient of the algebraic equations by discrete boundary.Numerical results show that the continuity of the auxiliary boundaries and the accuracy of the zero-stress boundaries are adequate,and the displacement of the free surface and the stress of the circular hole are related to the shape of the triangle,the position of the circular hole,the direction of the incident wave,and the frequency content of the excitation.Finally,time-domain responses are calculated by FFT based on the frequency domain theory,and the results reveal the wave propagation mechanism in a complicated structure. 展开更多
关键词 earthquake ground motions theoretical seismology wave scattering and diffraction wave propagation
下载PDF
A note on near-field site amplification effects of ground motion from a radially inhomogeneous valley 被引量:9
3
作者 Zhang Ning Gao Yufeng +1 位作者 Wu Yongxin Zhang Fei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期707-718,共12页
To improve the understanding of the near-field soil and topographic amplification effects, an analytical solution by the authors for the scattering of plane SH waves by a radially inhomogeneous semi-cylindrical valley... To improve the understanding of the near-field soil and topographic amplification effects, an analytical solution by the authors for the scattering of plane SH waves by a radially inhomogeneous semi-cylindrical valley is extended to the case of a line source of cylindrical SH waves. Upon confirmation of its accuracy with past exact solutions for a homogeneous and an inhomogeneous semi-cylindrical valley under far-field plane SH waves, the extended solution is used to calculate the ground motion amplification factors for both the homogeneous and inhomogeneous valleys subjected to near-field waves. A comprehensive parametric study is conducted with respect to the location of the wave source, the dimensionless frequency of the incident waves, and the inhomogeneity degree of the covering soil layer. It is found that more amplifications and reductions of ground motions will occur within a certain range in and around the valley as the sources are located further. Consistent with the far-field case, it is confirmed that an increase of the degree of inhomogeneity of the covering soil layer generally amplifies the ground motions significantly. 展开更多
关键词 elastic SH-waves wave scattering and diffraction ground motion amplification VALLEY CANYON
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部