Abstract: The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane ...Abstract: The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.展开更多
In this study,a theoretical approach is used to investigate the scattering problem of circular holes under a scalene triangle on the surface.The wave displacement function is obtained by solving the Helmholtz equation...In this study,a theoretical approach is used to investigate the scattering problem of circular holes under a scalene triangle on the surface.The wave displacement function is obtained by solving the Helmholtz equation that meets the zero-stress boundary conditions by adopting the method of separation of variables.Based on the complex function,multi-polar coordinate method,and region-matching technique,algebraic equations are established at auxiliary boundaries and free boundaries conditions in a complex domain.The auxiliary circle is used to solve the singularity of the reflex angle at the triangle corner.Then,according to sample statistics,the least squares method is used instead of the Fourier expansion method to solve the undetermined coefficient of the algebraic equations by discrete boundary.Numerical results show that the continuity of the auxiliary boundaries and the accuracy of the zero-stress boundaries are adequate,and the displacement of the free surface and the stress of the circular hole are related to the shape of the triangle,the position of the circular hole,the direction of the incident wave,and the frequency content of the excitation.Finally,time-domain responses are calculated by FFT based on the frequency domain theory,and the results reveal the wave propagation mechanism in a complicated structure.展开更多
To improve the understanding of the near-field soil and topographic amplification effects, an analytical solution by the authors for the scattering of plane SH waves by a radially inhomogeneous semi-cylindrical valley...To improve the understanding of the near-field soil and topographic amplification effects, an analytical solution by the authors for the scattering of plane SH waves by a radially inhomogeneous semi-cylindrical valley is extended to the case of a line source of cylindrical SH waves. Upon confirmation of its accuracy with past exact solutions for a homogeneous and an inhomogeneous semi-cylindrical valley under far-field plane SH waves, the extended solution is used to calculate the ground motion amplification factors for both the homogeneous and inhomogeneous valleys subjected to near-field waves. A comprehensive parametric study is conducted with respect to the location of the wave source, the dimensionless frequency of the incident waves, and the inhomogeneity degree of the covering soil layer. It is found that more amplifications and reductions of ground motions will occur within a certain range in and around the valley as the sources are located further. Consistent with the far-field case, it is confirmed that an increase of the degree of inhomogeneity of the covering soil layer generally amplifies the ground motions significantly.展开更多
基金National Natural Science Foundation of China under Grant Nos.51578373 and 51578372
文摘Abstract: The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.
基金National Natural Science Foundation of China under Grant No. 12072085Research Team Project of Heilongjiang Natural Science Foundation under Grant No. TD2020A001+2 种基金the Opening Fund of Acoustics Science and Technology Laboratory under Grant No. SSKF2020011the Fundamental Research Funds for the Central Universities under Grant No. 3072021CF0206the program for Innovative Research Team in China Earthquake Administration
文摘In this study,a theoretical approach is used to investigate the scattering problem of circular holes under a scalene triangle on the surface.The wave displacement function is obtained by solving the Helmholtz equation that meets the zero-stress boundary conditions by adopting the method of separation of variables.Based on the complex function,multi-polar coordinate method,and region-matching technique,algebraic equations are established at auxiliary boundaries and free boundaries conditions in a complex domain.The auxiliary circle is used to solve the singularity of the reflex angle at the triangle corner.Then,according to sample statistics,the least squares method is used instead of the Fourier expansion method to solve the undetermined coefficient of the algebraic equations by discrete boundary.Numerical results show that the continuity of the auxiliary boundaries and the accuracy of the zero-stress boundaries are adequate,and the displacement of the free surface and the stress of the circular hole are related to the shape of the triangle,the position of the circular hole,the direction of the incident wave,and the frequency content of the excitation.Finally,time-domain responses are calculated by FFT based on the frequency domain theory,and the results reveal the wave propagation mechanism in a complicated structure.
基金Fundamental Research Funds for the Central Universities under Grant No.2018B14014the National Natural Science Foundation of China under Grant No.51608172,41630638 and 51479050+3 种基金the National Key Basic Research Program of China "973" Program under Grant No.2015CB057901the National Key Research and Development Program of China under Grant No.2016YFC0800205the Public Service Sector R&D Project of Ministry of Water Resource of China under Grant No.201501035-03the 111 Projects under Grant No.B13024
文摘To improve the understanding of the near-field soil and topographic amplification effects, an analytical solution by the authors for the scattering of plane SH waves by a radially inhomogeneous semi-cylindrical valley is extended to the case of a line source of cylindrical SH waves. Upon confirmation of its accuracy with past exact solutions for a homogeneous and an inhomogeneous semi-cylindrical valley under far-field plane SH waves, the extended solution is used to calculate the ground motion amplification factors for both the homogeneous and inhomogeneous valleys subjected to near-field waves. A comprehensive parametric study is conducted with respect to the location of the wave source, the dimensionless frequency of the incident waves, and the inhomogeneity degree of the covering soil layer. It is found that more amplifications and reductions of ground motions will occur within a certain range in and around the valley as the sources are located further. Consistent with the far-field case, it is confirmed that an increase of the degree of inhomogeneity of the covering soil layer generally amplifies the ground motions significantly.