Synthetic aperture radar(SAR)is able to acquire high-resolution method using the active microwave imaging method.SAR images are widely used in target recognition,classification,and surface analysis,with extracted feat...Synthetic aperture radar(SAR)is able to acquire high-resolution method using the active microwave imaging method.SAR images are widely used in target recognition,classification,and surface analysis,with extracted features.Attribute scattering center(ASC)is able to describe the image features for these tasks.However,sidelobe effects reduce the accuracy and reliability of the estimated ASC model parameters.This paper incorporates the SAR super-resolution into the ASC extraction to improve its performance.Both filter bank and subspace methods are demonstrated for preprocessing to supress the sidelobe.Based on the preprocessed data,a reinforcement based ASC method is used to get the parameters.The experimental results show that the super-resolution method can reduce noise and suppress sidelobe effect,which improve accuracy of the estimated ASC model parameters.展开更多
This paper presents an all-parametric model of radar target in optic region, in which the localized scattering center's frequency and aspect angle dependent scattering level, distance and azimuth locations are mod...This paper presents an all-parametric model of radar target in optic region, in which the localized scattering center's frequency and aspect angle dependent scattering level, distance and azimuth locations are modeled as the feature vectors. And the traditional TLS-Prony algorithm is modified to extract these feature vectors. The analysis of Cramer-Rao bound shows that the modified algorithm not only improves the restriction of high signal-to-noise ratio(SNR)threshold of traditional TLS-Prony algorithm, but also is suitable to the extraction of big damped coefficients and high-resolution estimation of near separation poles. Finally, an illustrative example is presented to verify its practicability in the applications. The experimental results show that the method developed can not only recognize two airplane-like targets with similar shape at low SNR, but also compress the original radar data with high fidelity.展开更多
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of...A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.展开更多
Micromotion is an important target feature, although the target micromotion has an unfavorable influence on the synthetic aperture radar (SAR) image interpretation due to defocusing. This paper introduces micromotio...Micromotion is an important target feature, although the target micromotion has an unfavorable influence on the synthetic aperture radar (SAR) image interpretation due to defocusing. This paper introduces micromotion parameters into the scattering center model to obtain a hybrid micromotion-scattering center model, and then proposes an optimization algorithm based on the maximal likelihood estimation to solve the model for jointly obtaining target motion and scattering parameters. Initial value estimation methods using targets' ghost images are then presented to guarantee the global and fast convergence. Simulation results show the effectiveness of the proposed algorithm especially in high precision estimation and multiple targets processing.展开更多
The scattering centers(SCs)of low-detectable targets(LDTs)have a low scattering intensity.It is difficult to build the SC model of an LDT using the existing methods because these methods mainly concern dominant SCs wi...The scattering centers(SCs)of low-detectable targets(LDTs)have a low scattering intensity.It is difficult to build the SC model of an LDT using the existing methods because these methods mainly concern dominant SCs with strong scattering contributions.This paper presents an SC modeling approach to acquire the weak SCs of LDTs.We employ the induced currents at the LDT to search SCs,and the joint time-frequency transform together with the Hough transform to separate the scattering contributions of different SCs.Particle swarm optimization(PSO)is applied to improve the estimation results of SCs.The accuracy of the SC model built by this approach is verified by a full-wave numerical method.The validation results show that the SC model of the LDT can precisely simulate the signatures of high-resolution images,such as high-resolution range profile and inverse synthetic aperture radar(ISAR)images.展开更多
In order to deal with aliasing distortions of Doppler frequencies shown in time-frequency representation( TFR) with aspect undersampling,an approach using adaptive segmental compressive sampling according to the asp...In order to deal with aliasing distortions of Doppler frequencies shown in time-frequency representation( TFR) with aspect undersampling,an approach using adaptive segmental compressive sampling according to the aspect dependencies of the scattering centers is proposed. The random noise problem induced by compressive sampling is solved by employing a series of signal processing techniques of filtering,image transformation and Hough Transform. Three examples are presented to verify the effectiveness of this approach. The comparisons between the built models and the precise scattered fields computed by a well-validated full-wave numerical method are investigated,and the results showgood agreements between each other.展开更多
Parameter estimation of the attributed scattering center(ASC) model is significant for automatic target recognition(ATR). Sparse representation based parameter estimation methods have developed rapidly. Construction o...Parameter estimation of the attributed scattering center(ASC) model is significant for automatic target recognition(ATR). Sparse representation based parameter estimation methods have developed rapidly. Construction of the separable dictionary is a key issue for sparse representation technology. A compressive time-domain dictionary(TD) for ASC model is presented. Two-dimensional frequency domain responses of the ASC are produced and transformed into the time domain. Then these time domain responses are cutoff and stacked into vectors. These vectored time-domain responses are amalgamated to form the TD. Compared with the traditional frequency-domain dictionary(FD), the TD is a matrix that is quite spare and can markedly reduce the data size of the dictionary. Based on the basic TD construction method, we present four extended TD construction methods, which are available for different applications. In the experiments, the performance of the TD, including the basic model and the extended models, has been firstly analyzed in comparison with the FD. Secondly, an example of parameter estimation from SAR synthetic aperture radar(SAR) measurements of a target collected in an anechoic room is exhibited. Finally, a sparse image reconstruction example is from two apart apertures. Experimental results demonstrate the effectiveness and efficiency of the proposed TD.展开更多
A modified matrix enhancement and matrix pencil (MMEMP) method is presented for the scattering centers measurements in step-frequency radar. The method estimates the signal parameter pairs directly unlike the matrix e...A modified matrix enhancement and matrix pencil (MMEMP) method is presented for the scattering centers measurements in step-frequency radar. The method estimates the signal parameter pairs directly unlike the matrix enhancement and matrix pencil (MEMP) method which contains an additional step to pair the parameters related to each dimension. The downrange and crossrange expressions of the scattering centers are deduced, as well as the range ambiguities, from the point of view of MMEMP method. Compared with the Fourier transform method, the numerical simulation shows that both the resolution and precision of the MMEMP method are higher than those of the Fourier method. The processing results of the real measured data for three cylinders prove the above conclusions further.展开更多
In order to extract the feature information of ultra wide-band (UWB) radio fuze target and give full play to the warhead's strike ability, a method based on polar Hough transform for scattering centers extraction ...In order to extract the feature information of ultra wide-band (UWB) radio fuze target and give full play to the warhead's strike ability, a method based on polar Hough transform for scattering centers extraction of the target was proposed in this paper. It firstly utilized the fuze scanning to obtain the distance and azimuth information of the target's main scattering centers at different times, i.e. the track information of scattering centers under the polar coordinates, then used the polar Hough transform to transform the track into the parameter space in order to accumulate the dots and drew 3-D parameter space diagram, in which the peak points corresponded to the target's scattering centers. The simulation results indicate that the method can not only extract scattering centers efficiently and accurately, but also has strong anti-noise performance, and the algorithm is simple and easy to be implemented in engineering.展开更多
An electron collection layer(ECL)between a photoactive overlay and an electrode plays a crucial role in optimizing the light field and charge extraction in bulk-heterojunction(BHJ)polymer solar cells(PSCs).However,the...An electron collection layer(ECL)between a photoactive overlay and an electrode plays a crucial role in optimizing the light field and charge extraction in bulk-heterojunction(BHJ)polymer solar cells(PSCs).However,the typical thickness of the photoactive layer is thinner than its optical path lengths,limiting further improvement of light absorption and device performance.展开更多
A novel scheme for extracting the global scattering center model of radar targets is proposed in this paper.The 2D/3D scattering center models can be reconstructed based on the wideband measurements at different viewi...A novel scheme for extracting the global scattering center model of radar targets is proposed in this paper.The 2D/3D scattering center models can be reconstructed based on the wideband measurements at different viewing angles.The sphere spreading of the 1D scattering center projections is exploited.The 1D–2D/3D scatterer map(OTSM)is designed to manifest the high dimensional scattering characteristic of radar targets.The Hough transform and the least squares method are used to extract the stable scattering centers and their scattering coefficients.This modeling method does not need a high density of the spatial grid,which greatly cuts down the necessary original data.The model built in this way describes the stable point scattering mechanisms in a large spatial extent and can be extrapolated to other frequencies in the optical region.Examples verify the validity of both the model and the method.展开更多
Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribut...Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribution and scattering source detection. For the perfect adaptability to targets and the HF of the HF integrated RCS calculation platform, this technique is suitable to solve large complex targets and has lower requirement to the target modeling. A comparison with the result of 2-D radar imaging confirms the accuracy and reliability of this technique in recognition of the major scattering source on complex targets. This technique provides the foundation for rapid integrated evaluation of the scattering performance and 3-D scattering model reconstruction of large complex targets.展开更多
The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos...The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.展开更多
For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize th...For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize the weighted HRRP. In the approach, the separability of weighted HRRPs in different targets is measured by de- signing an objective function, and the weighted coefficients are computed by using the gradient descent method, thus enhancing the influence of stable range cells. Simulation results based on five aircraft models show that the approach can effectively optimize the weighted HRRP and improve the recognition accuracy.展开更多
The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geo...The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geometric theory of the diffraction(GTD)model are estimated at low signal-to-noise ratio(SNR).To solve this problem,a modified 3D-ESPRIT algorithm is proposed.The modified algorithm improves the parameter estimation accuracy by proposing a novel spatial smoothing technique.Firstly,we make cross-correlation of the auto-correlation matrices;then by averaging the cross-correlation matrices of the forward and backward spatial smoothing,we can obtain a novel equivalent spatial smoothing matrix.The formula of the modified algorithm is derived and the performance of this improved method is also analyzed.Then we compare root-meansquare-errors(RMSEs)of different parameters and the locating accuracy obtained by different algorithms.Furthermore,radar cross section(RCS)of radar targets is extrapolated.Simulation results verify the effectiveness and superiority of the modified 3DESPRIT algorithm.展开更多
Based on the analysis of impulse response properties, a scattering model of ultra wideband (UWB) radar targets is developed to estimate the target parameters exactly. With this model, two algorithms of multiple sign...Based on the analysis of impulse response properties, a scattering model of ultra wideband (UWB) radar targets is developed to estimate the target parameters exactly. With this model, two algorithms of multiple signal classification (MUSIC), and matrix pencil (MP), are introduced to calculate the scattering center parameters of targets and their performances are compared. The simulation experiments show that there are no differences in the estimation precision of MUSIC and MP methods when the signal-to-noise ratio (SNR) is larger than 13 dB. However, the MP method has a better performance than that of MUSIC method when the SNR is smaller than 13 dB. Besides, the time consuming of MP method is less than that of MUSIC method. Therefore, the MP algorithm is preferred for the parametric estimation of UWB radar targets.展开更多
With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. Howev...With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. However, due to the complexity of SAR imaging mechanism, interpreting targets in SAR images is a tough problem. This paper presents a new aircraft interpretation method based on the joint time-frequency analysis and multi-dimensional contrasting of basic structures. Moreover, SAR data acquisition experiment is designed for interpreting the aircraft. Analyzing the experiment data with our method, the result shows that the proposed method largely makes use of the SAR data information. The reasonable results can provide some auxiliary support for the SAR images manual interpretation.展开更多
In this paper, propagated δ pulses through different distance of plasma are calculated,and their time-frequency characteristics are studied using CWD (Choi-William distribution). It is found that several horizontal s...In this paper, propagated δ pulses through different distance of plasma are calculated,and their time-frequency characteristics are studied using CWD (Choi-William distribution). It is found that several horizontal spectra appear at early arrival time like discrete spectrum, at last time a hyperbolic curve lies in the time-frequency spectrum which corresponds to the frequency-group delay curve of plasma. To understand the time-frequency the property of a signal is helpful for obtaining the plasma parameters.展开更多
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia...The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR.展开更多
The Bayesian method is applied to the joint model selection and parameter estimation problem of the GTD model. An algorithm based on RJ-MCMC is designed. This algorithm not only improves the model order selection and ...The Bayesian method is applied to the joint model selection and parameter estimation problem of the GTD model. An algorithm based on RJ-MCMC is designed. This algorithm not only improves the model order selection and parameter estimation accuracy by exploiting the priori information of the GTD model, but also solves the mixed parameter estimation problem of the GTD model properly. Its performance is tested using numerical simulations and data generated by electromagnetic code. It is shown that it gives good model order selection and parameter estimation results, especially for low SNR, closely-spaced components and short data situations.展开更多
基金supported by the National Natural Foundation of China(No.62201158).
文摘Synthetic aperture radar(SAR)is able to acquire high-resolution method using the active microwave imaging method.SAR images are widely used in target recognition,classification,and surface analysis,with extracted features.Attribute scattering center(ASC)is able to describe the image features for these tasks.However,sidelobe effects reduce the accuracy and reliability of the estimated ASC model parameters.This paper incorporates the SAR super-resolution into the ASC extraction to improve its performance.Both filter bank and subspace methods are demonstrated for preprocessing to supress the sidelobe.Based on the preprocessed data,a reinforcement based ASC method is used to get the parameters.The experimental results show that the super-resolution method can reduce noise and suppress sidelobe effect,which improve accuracy of the estimated ASC model parameters.
文摘This paper presents an all-parametric model of radar target in optic region, in which the localized scattering center's frequency and aspect angle dependent scattering level, distance and azimuth locations are modeled as the feature vectors. And the traditional TLS-Prony algorithm is modified to extract these feature vectors. The analysis of Cramer-Rao bound shows that the modified algorithm not only improves the restriction of high signal-to-noise ratio(SNR)threshold of traditional TLS-Prony algorithm, but also is suitable to the extraction of big damped coefficients and high-resolution estimation of near separation poles. Finally, an illustrative example is presented to verify its practicability in the applications. The experimental results show that the method developed can not only recognize two airplane-like targets with similar shape at low SNR, but also compress the original radar data with high fidelity.
文摘A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation for Young Scientists of China (61101182)
文摘Micromotion is an important target feature, although the target micromotion has an unfavorable influence on the synthetic aperture radar (SAR) image interpretation due to defocusing. This paper introduces micromotion parameters into the scattering center model to obtain a hybrid micromotion-scattering center model, and then proposes an optimization algorithm based on the maximal likelihood estimation to solve the model for jointly obtaining target motion and scattering parameters. Initial value estimation methods using targets' ghost images are then presented to guarantee the global and fast convergence. Simulation results show the effectiveness of the proposed algorithm especially in high precision estimation and multiple targets processing.
基金This work was supported by the National Key R&D Program of China(2017YFB0202500)the National Natural Science Foundation of China(61771052).
文摘The scattering centers(SCs)of low-detectable targets(LDTs)have a low scattering intensity.It is difficult to build the SC model of an LDT using the existing methods because these methods mainly concern dominant SCs with strong scattering contributions.This paper presents an SC modeling approach to acquire the weak SCs of LDTs.We employ the induced currents at the LDT to search SCs,and the joint time-frequency transform together with the Hough transform to separate the scattering contributions of different SCs.Particle swarm optimization(PSO)is applied to improve the estimation results of SCs.The accuracy of the SC model built by this approach is verified by a full-wave numerical method.The validation results show that the SC model of the LDT can precisely simulate the signatures of high-resolution images,such as high-resolution range profile and inverse synthetic aperture radar(ISAR)images.
基金Supported by the National Natural Science Foundation of China(61421001,61471041,61671059)
文摘In order to deal with aliasing distortions of Doppler frequencies shown in time-frequency representation( TFR) with aspect undersampling,an approach using adaptive segmental compressive sampling according to the aspect dependencies of the scattering centers is proposed. The random noise problem induced by compressive sampling is solved by employing a series of signal processing techniques of filtering,image transformation and Hough Transform. Three examples are presented to verify the effectiveness of this approach. The comparisons between the built models and the precise scattered fields computed by a well-validated full-wave numerical method are investigated,and the results showgood agreements between each other.
基金Project(NCET-11-0866)supported by Education Ministry's new Century Excellent Talents Supporting Plan,China
文摘Parameter estimation of the attributed scattering center(ASC) model is significant for automatic target recognition(ATR). Sparse representation based parameter estimation methods have developed rapidly. Construction of the separable dictionary is a key issue for sparse representation technology. A compressive time-domain dictionary(TD) for ASC model is presented. Two-dimensional frequency domain responses of the ASC are produced and transformed into the time domain. Then these time domain responses are cutoff and stacked into vectors. These vectored time-domain responses are amalgamated to form the TD. Compared with the traditional frequency-domain dictionary(FD), the TD is a matrix that is quite spare and can markedly reduce the data size of the dictionary. Based on the basic TD construction method, we present four extended TD construction methods, which are available for different applications. In the experiments, the performance of the TD, including the basic model and the extended models, has been firstly analyzed in comparison with the FD. Secondly, an example of parameter estimation from SAR synthetic aperture radar(SAR) measurements of a target collected in an anechoic room is exhibited. Finally, a sparse image reconstruction example is from two apart apertures. Experimental results demonstrate the effectiveness and efficiency of the proposed TD.
文摘A modified matrix enhancement and matrix pencil (MMEMP) method is presented for the scattering centers measurements in step-frequency radar. The method estimates the signal parameter pairs directly unlike the matrix enhancement and matrix pencil (MEMP) method which contains an additional step to pair the parameters related to each dimension. The downrange and crossrange expressions of the scattering centers are deduced, as well as the range ambiguities, from the point of view of MMEMP method. Compared with the Fourier transform method, the numerical simulation shows that both the resolution and precision of the MMEMP method are higher than those of the Fourier method. The processing results of the real measured data for three cylinders prove the above conclusions further.
文摘In order to extract the feature information of ultra wide-band (UWB) radio fuze target and give full play to the warhead's strike ability, a method based on polar Hough transform for scattering centers extraction of the target was proposed in this paper. It firstly utilized the fuze scanning to obtain the distance and azimuth information of the target's main scattering centers at different times, i.e. the track information of scattering centers under the polar coordinates, then used the polar Hough transform to transform the track into the parameter space in order to accumulate the dots and drew 3-D parameter space diagram, in which the peak points corresponded to the target's scattering centers. The simulation results indicate that the method can not only extract scattering centers efficiently and accurately, but also has strong anti-noise performance, and the algorithm is simple and easy to be implemented in engineering.
基金supported by the National Natural Science Foundation of China(grant nos.51873007,51961165102,and 21835006)the Fundamental Research Funds for the Central Universities in China(grant nos.2019MS025,2018MS032,and 2019QN057).
文摘An electron collection layer(ECL)between a photoactive overlay and an electrode plays a crucial role in optimizing the light field and charge extraction in bulk-heterojunction(BHJ)polymer solar cells(PSCs).However,the typical thickness of the photoactive layer is thinner than its optical path lengths,limiting further improvement of light absorption and device performance.
基金supported by the National Basic Research Program of China (No.51314).
文摘A novel scheme for extracting the global scattering center model of radar targets is proposed in this paper.The 2D/3D scattering center models can be reconstructed based on the wideband measurements at different viewing angles.The sphere spreading of the 1D scattering center projections is exploited.The 1D–2D/3D scatterer map(OTSM)is designed to manifest the high dimensional scattering characteristic of radar targets.The Hough transform and the least squares method are used to extract the stable scattering centers and their scattering coefficients.This modeling method does not need a high density of the spatial grid,which greatly cuts down the necessary original data.The model built in this way describes the stable point scattering mechanisms in a large spatial extent and can be extrapolated to other frequencies in the optical region.Examples verify the validity of both the model and the method.
基金supported by the National Natural Science Foundation of China (Grant No.90305026)
文摘Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribution and scattering source detection. For the perfect adaptability to targets and the HF of the HF integrated RCS calculation platform, this technique is suitable to solve large complex targets and has lower requirement to the target modeling. A comparison with the result of 2-D radar imaging confirms the accuracy and reliability of this technique in recognition of the major scattering source on complex targets. This technique provides the foundation for rapid integrated evaluation of the scattering performance and 3-D scattering model reconstruction of large complex targets.
文摘The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.
基金Supported by the Academician Foundation of the 14th Research Institute of China Electronics Technology Group Corporation(2008041001)~~
文摘For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize the weighted HRRP. In the approach, the separability of weighted HRRPs in different targets is measured by de- signing an objective function, and the weighted coefficients are computed by using the gradient descent method, thus enhancing the influence of stable range cells. Simulation results based on five aircraft models show that the approach can effectively optimize the weighted HRRP and improve the recognition accuracy.
基金This work was supported by the National Natural Science Foundation of China(61372033).
文摘The noise robustness and parameter estimation performance of the classical three-dimensional estimating signal parameter via rotational invariance techniques(3D-ESPRIT)algorithm are poor when the parameters of the geometric theory of the diffraction(GTD)model are estimated at low signal-to-noise ratio(SNR).To solve this problem,a modified 3D-ESPRIT algorithm is proposed.The modified algorithm improves the parameter estimation accuracy by proposing a novel spatial smoothing technique.Firstly,we make cross-correlation of the auto-correlation matrices;then by averaging the cross-correlation matrices of the forward and backward spatial smoothing,we can obtain a novel equivalent spatial smoothing matrix.The formula of the modified algorithm is derived and the performance of this improved method is also analyzed.Then we compare root-meansquare-errors(RMSEs)of different parameters and the locating accuracy obtained by different algorithms.Furthermore,radar cross section(RCS)of radar targets is extrapolated.Simulation results verify the effectiveness and superiority of the modified 3DESPRIT algorithm.
基金supported by the Aerospace Science and Technology Foundation of China(2007CH080004).
文摘Based on the analysis of impulse response properties, a scattering model of ultra wideband (UWB) radar targets is developed to estimate the target parameters exactly. With this model, two algorithms of multiple signal classification (MUSIC), and matrix pencil (MP), are introduced to calculate the scattering center parameters of targets and their performances are compared. The simulation experiments show that there are no differences in the estimation precision of MUSIC and MP methods when the signal-to-noise ratio (SNR) is larger than 13 dB. However, the MP method has a better performance than that of MUSIC method when the SNR is smaller than 13 dB. Besides, the time consuming of MP method is less than that of MUSIC method. Therefore, the MP algorithm is preferred for the parametric estimation of UWB radar targets.
文摘With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. However, due to the complexity of SAR imaging mechanism, interpreting targets in SAR images is a tough problem. This paper presents a new aircraft interpretation method based on the joint time-frequency analysis and multi-dimensional contrasting of basic structures. Moreover, SAR data acquisition experiment is designed for interpreting the aircraft. Analyzing the experiment data with our method, the result shows that the proposed method largely makes use of the SAR data information. The reasonable results can provide some auxiliary support for the SAR images manual interpretation.
文摘In this paper, propagated δ pulses through different distance of plasma are calculated,and their time-frequency characteristics are studied using CWD (Choi-William distribution). It is found that several horizontal spectra appear at early arrival time like discrete spectrum, at last time a hyperbolic curve lies in the time-frequency spectrum which corresponds to the frequency-group delay curve of plasma. To understand the time-frequency the property of a signal is helpful for obtaining the plasma parameters.
基金Project(61171133)supported by the National Natural Science Foundation of ChinaProject(11JJ1010)supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProject(61101182)supported by National Natural Science Foundation for Young Scientists of China
文摘The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR.
基金Supported by the National "973" Key Basic Research Project (Grant No. 51314)
文摘The Bayesian method is applied to the joint model selection and parameter estimation problem of the GTD model. An algorithm based on RJ-MCMC is designed. This algorithm not only improves the model order selection and parameter estimation accuracy by exploiting the priori information of the GTD model, but also solves the mixed parameter estimation problem of the GTD model properly. Its performance is tested using numerical simulations and data generated by electromagnetic code. It is shown that it gives good model order selection and parameter estimation results, especially for low SNR, closely-spaced components and short data situations.