The scattering features of microwave(MW) by planar plasma layer, plasma column and plasma-column array under different parameters have been numerically studied by the finitedifference time-domain(FDTD) method. The...The scattering features of microwave(MW) by planar plasma layer, plasma column and plasma-column array under different parameters have been numerically studied by the finitedifference time-domain(FDTD) method. The effects of the plasma frequency and electron collision rate on MW's reflectance, transmittance and absorptance are examined. The results show that for the planar plasma layer, the electron collision plays an important role in MW absorption and the reduction of wave reflection. In the plasma column condition, strong scattering occurs in certain directions. The scattering pattern depends on the plasma frequency, electron collision rate and column radius. A collisional, non-planar shaped plasma object like the plasma-column array can reduce significantly the wave reflection comparing with the planar plasma layer.展开更多
文摘The scattering features of microwave(MW) by planar plasma layer, plasma column and plasma-column array under different parameters have been numerically studied by the finitedifference time-domain(FDTD) method. The effects of the plasma frequency and electron collision rate on MW's reflectance, transmittance and absorptance are examined. The results show that for the planar plasma layer, the electron collision plays an important role in MW absorption and the reduction of wave reflection. In the plasma column condition, strong scattering occurs in certain directions. The scattering pattern depends on the plasma frequency, electron collision rate and column radius. A collisional, non-planar shaped plasma object like the plasma-column array can reduce significantly the wave reflection comparing with the planar plasma layer.