期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The Smoothness of Scattering Operators for Sinh-Gordon and Nonlinear Schrodinger Equations
1
作者 Bao Xiang WANG Department of Mathematics, Hebei University. Baoding 071002. P. R. China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第3期549-564,共16页
We show that the scattering operator carries a band in H^s (R^n)×H^(s-1)(R^n) into H^s (R^n)× H^(s-1)(R^n) for the sinh-Gordon equation and an analogous result also holds true for the nonlinear Schrdinger eq... We show that the scattering operator carries a band in H^s (R^n)×H^(s-1)(R^n) into H^s (R^n)× H^(s-1)(R^n) for the sinh-Gordon equation and an analogous result also holds true for the nonlinear Schrdinger equation with an exponential nonlinearity, where s≥n/2 is arbitrary and n≥2. Therefore, the scattering operators are infinitely smooth for the above two equations. 展开更多
关键词 Sinh-Gordon equation Nolinear Schrodinger equation The smoothness of scattering operator
原文传递
On the initial value problem and scattering of solutions for the generalized Davey-Stewartson systems 被引量:6
2
作者 王保祥 郭柏灵 《Science China Mathematics》 SCIE 2001年第8期994-1002,共9页
We study the initial value problem of the Davey-Stewartson systems for the elliptic-elliptic and hyperbolic-elliptic cases. The local and global existence and uniqueness of solutions in Hs is shown. Also, we prove tha... We study the initial value problem of the Davey-Stewartson systems for the elliptic-elliptic and hyperbolic-elliptic cases. The local and global existence and uniqueness of solutions in Hs is shown. Also, we prove that the scattering operator carries a band in Hs into Hs. 展开更多
关键词 Davey-Stewartson systems Initial value problem scattering operators Hs-solutions
原文传递
Scattering Problem for Klein–Gordon Equation with Cubic Convolution Nonlinearity
3
作者 Ru Ying XUE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第5期827-836,共10页
The scattering problem for the Klein–Gordon equation with cubic convolution nonlinearity is considered. Based on the Strichartz estimates for the inhomogeneous Klein–Gordon equation, we prove the existence of the sc... The scattering problem for the Klein–Gordon equation with cubic convolution nonlinearity is considered. Based on the Strichartz estimates for the inhomogeneous Klein–Gordon equation, we prove the existence of the scattering operator, which improves the known results in some sense. 展开更多
关键词 Asymptotic of solution Klein–Gordon equation scattering operator
原文传递
Energy Scattering for the Generalized Davey-Stewartson Equations
4
作者 Cheng-chun HaoAcademy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2003年第2期333-340,共8页
Abstract Considering the generalized Davey-Stewartson equation $i\mathop u\limits^. - \Delta u + \lambda \left| u \right|^p u + \mu E\left( {\left| u \right|^q } \right)\left| u \right|^{q - 2} u = 0$ where $\lambda &... Abstract Considering the generalized Davey-Stewartson equation $i\mathop u\limits^. - \Delta u + \lambda \left| u \right|^p u + \mu E\left( {\left| u \right|^q } \right)\left| u \right|^{q - 2} u = 0$ where $\lambda > 0,\mu \ge 0,E = F^{ - 1} \left( {\xi _1^2 /\left| \xi \right|^2 } \right)F$ we obtain the existence of scattering operator in ^(A↑^n) := { u ] H1(A↑^n) : |x|u ] L2(A↑^n)}. 展开更多
关键词 Keywords Generalized Davey-Stewartson equation pseudo conformally invariant conservation law scattering operator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部