An analytical solution is presented for the electromagnetic scattering from an infinite-length metallic carbon nanotube and a carbon nanotube bundle. The scattering field and scattering cross section are predicted usi...An analytical solution is presented for the electromagnetic scattering from an infinite-length metallic carbon nanotube and a carbon nanotube bundle. The scattering field and scattering cross section are predicted using a modal technique based on a Bessel and Hankel function for the electric line source and a quantum conductance function for the carbon nanotube. For the particular case of an isolated armchair (10, 10) carbon nanotube, the scattered field predicted from this technique is in excellent agreement with the measured result. Furthermore, the analysis indicates that the scattering pattern of an isolated carbon nanotube differs from that of the carbon nanotube bundle of identical index (m, n) metallic carbon nanotubes.展开更多
The scattering of electromagnetic wave by an array of parallel metallic single-walled carbon nanotubes is investigated based on the boundary-value method. Electronic excitations over each nanotube surface are modeled ...The scattering of electromagnetic wave by an array of parallel metallic single-walled carbon nanotubes is investigated based on the boundary-value method. Electronic excitations over each nanotube surface are modeled as an infinitesimally thin cylindrical layer of the free-electron gas. The scattering cross section of both transverse magnetic (TM) and transverse electric (TE) uniform plane waves by the system at normal incidences is obtained.展开更多
We provide an effective method to investigate the field gradient effect in nanoconfined plasmon-matter interaction.Aligned ultralong SWNTs without defects were grown on marked substrates, followed by assembling gold n...We provide an effective method to investigate the field gradient effect in nanoconfined plasmon-matter interaction.Aligned ultralong SWNTs without defects were grown on marked substrates, followed by assembling gold nanoparticle clusters around individual nanotubes. The Raman scattering behavior of a nanotube placed in an atomic scale nanogap between adjacent nanoparticles was studied. In addition to the expected plasmon-induced Raman enhancement up to 103,the defect-free D-mode of an individual SWNT induced by gradient field is found for the first time. When the light is confined at atomic scale, gradient field Raman scattering becomes significant and dipole-forbidden phonon modes can be activated by quadrupole Raman tensor variation, indicating breakdown of the Raman selection rules.展开更多
We report on a theoretical investigation of a direct current generation in carbon nanotubes (CNTs) that are stimulated axially by terahertz (THz) field. We consider the kinetic approach based on the semiclassical Bolt...We report on a theoretical investigation of a direct current generation in carbon nanotubes (CNTs) that are stimulated axially by terahertz (THz) field. We consider the kinetic approach based on the semiclassical Boltzmann’s transport equation with constant relaxation time approximation, together with the energy spectrum of an electron in the tight-binding approximation. Our results indicate that for strong THz-fields, there is simultaneous generation of DC current in the axial and circumferential directions of the CNTs, even at room temperature. We found that a THz-field can induce a negative conductivity in the CNTs that leads to the THz field induced DC current. For varying amplitude of the THz-field, the current density decreases rapidly and modulates around zero with interval of negative conductivity. The interval decreases with increasing the amplitude of the THz-field. We show that the THz-field can cause fast switching from a zero DC current to a finite DC current due to the quasi-ballistic transport, and that electron scattering is a necessary condition for switching.展开更多
This paper investigates the radiation characteristics of metal single-walled zig-zag carbon nanotubes as a dipole antenna at terahertz wave range. The current distribution, input impedance and mutual impedance are cal...This paper investigates the radiation characteristics of metal single-walled zig-zag carbon nanotubes as a dipole antenna at terahertz wave range. The current distribution, input impedance and mutual impedance are calculated for various geometrical parameters of vertically-aligned carbon nanotubes. The numerical results demonstrate the properties of the antenna depending strongly on the geometrical parameters such as the radius, the lengths of carbon nantobues, and the spacing between nanotubes. It is found that the zig-zag carbon nanotubes exhibit very high input impedance and the mutual impedances for antenna array applications. These unique high impedance properties are different from the conventional metal thin wire antenna. The far-field patterns and gain of antenna array are also calculated. The maximum gain of array of 100-element array is up to 20.0 dB, which is larger than the gain of 0.598 dB of single dipole antenna at distance d = 0.5λ.展开更多
We report the hierarchical assembly of Au nanoparticles on carboxylized carbon nanotubes(c-CNTs)through Cu^(2+) coordination. This route is facile and green, and can easily control the loading density of Au nanop...We report the hierarchical assembly of Au nanoparticles on carboxylized carbon nanotubes(c-CNTs)through Cu^(2+) coordination. This route is facile and green, and can easily control the loading density of Au nanoparticles. The c-CNT matrix ensures uniform distribution of Au nanoparticles, which is particularly important for the enrichment of hot spots while preventing their serious agglomeration. Moreover, the cCNT matrix also contributes to the electromagnetic enhancement due to its surface plasmon resonance,and the chemical enhancement due to the adsorption of the target molecules. The resulting Au@c-CNT nanohybrids exhibit a remarkable synergy in SERS compared to neat Au nanoparticles.展开更多
A two-dimensional(2D)surface-enhanced Raman scattering(SERS)substrate is fabricated by decorating carbon nanotube(CNT)films with Ag nanoparticles(Ag NPs)in different sizes,via simple and low-cost chemical reduction me...A two-dimensional(2D)surface-enhanced Raman scattering(SERS)substrate is fabricated by decorating carbon nanotube(CNT)films with Ag nanoparticles(Ag NPs)in different sizes,via simple and low-cost chemical reduction method and self-assembling method.The change of Raman and SERS activity of carbon nanotubes/Ag nanoparticles(CNTs/Ag NPs)composites with varying size of Ag NPs are investigated by using rhodamine 6G(R6G)as a probe molecule.Meanwhile,the scattering cross section of Ag NPs and the distribution of electric field of CNTs/Ag NPs composite are simulated through finite difference time domain(FDTD)method.Surface plasmon resonance(SPR)wavelength is redshifted as the size of Ag NPs increases,and the intensity of SERS and electric field increase with Ag NPs size increasing.The experiment and simulation results show a Raman scattering enhancement factor(EF)of 108for the hybrid substrate.展开更多
Single-walled carbon nanotubes (SWCNTs) illuminated by white light should appear colored due to resonance Rayleigh scattering. However, true-color imaging of SWCNTs on substrates has not been reported, because of th...Single-walled carbon nanotubes (SWCNTs) illuminated by white light should appear colored due to resonance Rayleigh scattering. However, true-color imaging of SWCNTs on substrates has not been reported, because of the extremely low scattering intensity of SWCNTs and the strong substrate scattering. Here we show that Rayleigh scattering can be greatly enhanced by the interface dipole enhancement effect. Consequently colorful SWCNTs on substrates can be directly imaged under an optical microscope by wide field supercontinuum laser illumination, which facilitates high throughput chirality assignment of individual SWCNTs. This approach, termed "Rayleigh imaging microscopy", is not restricted to SWCNTs, but widely applicable to a variety of nanomaterials, which enables the colorful nanoworld to be explored under optical microscopes.展开更多
Carbon nanotubes were prepared by chemical vapor deposition (CVD) of hydrocarbon gas on various substrates.The effect of substrates on the growth,morphology and structure of carbon nanotubes were investigated.Aligned ...Carbon nanotubes were prepared by chemical vapor deposition (CVD) of hydrocarbon gas on various substrates.The effect of substrates on the growth,morphology and structure of carbon nanotubes were investigated.Aligned carbon nanotubes with high density and purity were achieved by CVD on mesoporous silica substrate.The Raman scattering of aligned carbon nanotubes was carried out,and the dependence of the phonon properties on the mi-crostructure of the nanotubes has been discussed.展开更多
We study theoretically the electron transport properties in achiral carbon nanotubes under the influence of an external electric field E(t) using Boltzmann’s transport equation to derive the current-density. A negati...We study theoretically the electron transport properties in achiral carbon nanotubes under the influence of an external electric field E(t) using Boltzmann’s transport equation to derive the current-density. A negative differential conductivity (NDC) is predicted in quasi-static approximation i.e., ωτ 0 is equal to the amplitude of the AC electric field E1. The peak of the NDC intensity occurs at very weaker fields than that of superlattice under the same conditions. The peak intensity decreases and shifts to right with the increase in the amplitude of the ac field. This mechanism suppresses the domain formation and therefore could be used in terahertz frequency generation.展开更多
Optical and electrical properties of composites,prepared by filling of high density polyethylene(HDPE) with two kinds of multi-walled carbon nanotubes(MWNTs) differing in diameters,were explored by terahertz time-doma...Optical and electrical properties of composites,prepared by filling of high density polyethylene(HDPE) with two kinds of multi-walled carbon nanotubes(MWNTs) differing in diameters,were explored by terahertz time-domain spectroscopy(THz-TDS) in the frequency range from 0.2 to 1.6 THz.It is found that composite with larger-diameter MWNTs possesses larger absorption coefficient and conductivity at the same concentration.The real part of the ac conductivity of the composites follows a power law dependence on frequency.And the power index is around 0.75 regardless of the MWNT concentration and diameter.The experimental data were analyzed with Cole-Cole equation under the assumption that the conductive clusters dispersed in the polymer matrix behave like dipoles and contribute mainly to the dielectric loss.It is found that both of the composites have similar values of relaxation time and distribution parameter.With increase of the MWNTs concentration,the relaxation time increases and tends to saturate at 0.7 ps after passing through the percolation threshold.展开更多
This paper investigates the electromagnetic radiation characteristics of a metallic, large aspect ratio single walled carbon nanotube antenna in the terahertz frequency region below 12.5 THz. The key features of terah...This paper investigates the electromagnetic radiation characteristics of a metallic, large aspect ratio single walled carbon nanotube antenna in the terahertz frequency region below 12.5 THz. The key features of terahertz pulse have been revealed on the carbon nanotube antenna in comparison with conventional photoconductive switching. The terahertz waveforms, radiation power and their field distributions have been evaluated and are analysed. The Fourier transformed spectra over the whole frequency range demonstrate that the carbon nanotube antenna can be used as radiation source for broadband terahertz applications.展开更多
Recent progress in the observation of surface-enhanced Raman scattering (SERS) is reviewed to examine the possibility of finding a novel route for the effective photoexcitation of materials. The importance of well-c...Recent progress in the observation of surface-enhanced Raman scattering (SERS) is reviewed to examine the possibility of finding a novel route for the effective photoexcitation of materials. The importance of well-controlled SERS experiments on a single molecule at a single site is discussed based on the difference in the information obtained from ensemble SERS measurements using mul- tiple active sites with an uncontrolled number of molecules. A single-molecule SERS observation performed at a mechanically controllable breaking junction with a simultaneous conductivity mea- surement provides clear evidence of the drastic changes both in the intensity and in the Raman mode selectivity of the electromagnetic field generated by localized surface plasmon resonance. Careful con- trol of the field at a few-nanometer-wide gap of a metal nanodimer results in the modification of the selection rule of electronic excitation of an isolated single-walled carbon nanotube. The examples shown in this review suggest that a single-site SERS observation could be used as a novel tool to find, develop, and implement applications of plasmon-induced photoexcitation of materials.展开更多
The optical effect of a nanometer or sub-nanometer interfacial layer of condensed molecules surrounding individual nanomaterials such as single-walled carbon nanotubes (SWCNTs) has been studied theoretically and exp...The optical effect of a nanometer or sub-nanometer interfacial layer of condensed molecules surrounding individual nanomaterials such as single-walled carbon nanotubes (SWCNTs) has been studied theoretically and experimentally. This interfacial layer, when illuminated by light, behaves as an optical dipole lattice and contributes an instantaneous near field which enhances the local field on neighboring atoms, molecules, or nanomaterials, which in turn may lead to enhanced Rayleigh scattering, Raman scattering, and fluorescence. The theory of this interface dipole enhanced effect (IDEE) predicts that a smaller distance between the nanomaterials and the plane of the interracial layer, or a larger ratio of the dielectric constants of the interfacial layer to the surrounding medium, will result in a larger field enhancement factor. This prediction is further experimentally verified by several implementations of enhanced Rayleigh scattering of SWCNTs as well as in situ Rayleigh scattering of gradually charged SWCNTs. The interface dipole enhanced Rayleigh scattering not only enables true-color real-time imaging of nanomaterials, but also provides an effective means to peer into the subtle interfacial phenomena.展开更多
Recently measured thermal conductivity in single-walled carbon nanotube ropes in the temperature range 8 - 350 K has been explained using an anisotropic dynamical model which not only takes into account the quasi two-...Recently measured thermal conductivity in single-walled carbon nanotube ropes in the temperature range 8 - 350 K has been explained using an anisotropic dynamical model which not only takes into account the quasi two-dimensional nature of the folded graphene sheets that forms the nanotubes, but also the intertube coupling, in addition to the phonon frequency and dimensionality dependent relaxation time of phonon-phonon scattering and interaction.展开更多
针对太赫兹探测器的研究现状,分析研究了现有太赫兹探测器的优缺点,并对热释电型太赫兹探测器的热释电材料和吸收材料进行研究,提出了一种基于铌镁钛酸铅(PMNT)晶片的新型太赫兹探测器的设计和制作方法。用PMNT晶片作为热释电材料,碳纳...针对太赫兹探测器的研究现状,分析研究了现有太赫兹探测器的优缺点,并对热释电型太赫兹探测器的热释电材料和吸收材料进行研究,提出了一种基于铌镁钛酸铅(PMNT)晶片的新型太赫兹探测器的设计和制作方法。用PMNT晶片作为热释电材料,碳纳米管作为吸收材料,使用精密减薄抛光工艺和溅射电极工艺等工艺技术,完成了新型热释电太赫兹探测器的设计与制作。并利用该探测器设计了一款太赫兹功率计,经测试,该功率计在0.1~30 THz宽频段、0.5~100 m W大功率动态范围内,功率测量准确度达到了±10%,综合指标达到国际同类产品先进水平,应用效果良好。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60871073,60971064,and 51005001)the Open Program of the State Key Laboratory of Millimeter Wave of China(Grant No.K201006)+1 种基金the Special Funds for the Technological and Innovative Talent of Harbin City,China(Grant No.2010RFXXG010)the Youth Foundation of Harbin University of Science and Technology,China(Grant Nos.2009YF025 and 2009YF024)
文摘An analytical solution is presented for the electromagnetic scattering from an infinite-length metallic carbon nanotube and a carbon nanotube bundle. The scattering field and scattering cross section are predicted using a modal technique based on a Bessel and Hankel function for the electric line source and a quantum conductance function for the carbon nanotube. For the particular case of an isolated armchair (10, 10) carbon nanotube, the scattered field predicted from this technique is in excellent agreement with the measured result. Furthermore, the analysis indicates that the scattering pattern of an isolated carbon nanotube differs from that of the carbon nanotube bundle of identical index (m, n) metallic carbon nanotubes.
文摘The scattering of electromagnetic wave by an array of parallel metallic single-walled carbon nanotubes is investigated based on the boundary-value method. Electronic excitations over each nanotube surface are modeled as an infinitesimally thin cylindrical layer of the free-electron gas. The scattering cross section of both transverse magnetic (TM) and transverse electric (TE) uniform plane waves by the system at normal incidences is obtained.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB932302)the National Natural Science Foundation of China(Grant Nos.11634014,51172271,and 51372269)the "Strategic Priority Research Program" of the Chinese Academy of Sciences(Grant Nos.XDA09040202and XDA09040400)
文摘We provide an effective method to investigate the field gradient effect in nanoconfined plasmon-matter interaction.Aligned ultralong SWNTs without defects were grown on marked substrates, followed by assembling gold nanoparticle clusters around individual nanotubes. The Raman scattering behavior of a nanotube placed in an atomic scale nanogap between adjacent nanoparticles was studied. In addition to the expected plasmon-induced Raman enhancement up to 103,the defect-free D-mode of an individual SWNT induced by gradient field is found for the first time. When the light is confined at atomic scale, gradient field Raman scattering becomes significant and dipole-forbidden phonon modes can be activated by quadrupole Raman tensor variation, indicating breakdown of the Raman selection rules.
文摘We report on a theoretical investigation of a direct current generation in carbon nanotubes (CNTs) that are stimulated axially by terahertz (THz) field. We consider the kinetic approach based on the semiclassical Boltzmann’s transport equation with constant relaxation time approximation, together with the energy spectrum of an electron in the tight-binding approximation. Our results indicate that for strong THz-fields, there is simultaneous generation of DC current in the axial and circumferential directions of the CNTs, even at room temperature. We found that a THz-field can induce a negative conductivity in the CNTs that leads to the THz field induced DC current. For varying amplitude of the THz-field, the current density decreases rapidly and modulates around zero with interval of negative conductivity. The interval decreases with increasing the amplitude of the THz-field. We show that the THz-field can cause fast switching from a zero DC current to a finite DC current due to the quasi-ballistic transport, and that electron scattering is a necessary condition for switching.
基金Project supported by the National Natural Science Foundation of China (Grant No.60571026)the Open Project of State Key Laboratory of Millimeter Wave (Grant No.K201006)the Science and Technology Research Foundation of Heilongjiang Education Bureau of China (Grant No.11531055)
文摘This paper investigates the radiation characteristics of metal single-walled zig-zag carbon nanotubes as a dipole antenna at terahertz wave range. The current distribution, input impedance and mutual impedance are calculated for various geometrical parameters of vertically-aligned carbon nanotubes. The numerical results demonstrate the properties of the antenna depending strongly on the geometrical parameters such as the radius, the lengths of carbon nantobues, and the spacing between nanotubes. It is found that the zig-zag carbon nanotubes exhibit very high input impedance and the mutual impedances for antenna array applications. These unique high impedance properties are different from the conventional metal thin wire antenna. The far-field patterns and gain of antenna array are also calculated. The maximum gain of array of 100-element array is up to 20.0 dB, which is larger than the gain of 0.598 dB of single dipole antenna at distance d = 0.5λ.
基金financially supported by the National Natural Science Foundation of China(No.21474058)
文摘We report the hierarchical assembly of Au nanoparticles on carboxylized carbon nanotubes(c-CNTs)through Cu^(2+) coordination. This route is facile and green, and can easily control the loading density of Au nanoparticles. The c-CNT matrix ensures uniform distribution of Au nanoparticles, which is particularly important for the enrichment of hot spots while preventing their serious agglomeration. Moreover, the cCNT matrix also contributes to the electromagnetic enhancement due to its surface plasmon resonance,and the chemical enhancement due to the adsorption of the target molecules. The resulting Au@c-CNT nanohybrids exhibit a remarkable synergy in SERS compared to neat Au nanoparticles.
基金the National Natural Science Foundation of China(Grant No.61875024)the Natural Science Foundation of Chongqing,China(Grant Nos.cstc2019jcyjmsxm X0639 and cstc2020jcyj-msxm0605)the Scientific and Technology Research Program of Chongqing Municipal Education Commission,China(Grant Nos.KJQN202000648 and KJQN201900602)。
文摘A two-dimensional(2D)surface-enhanced Raman scattering(SERS)substrate is fabricated by decorating carbon nanotube(CNT)films with Ag nanoparticles(Ag NPs)in different sizes,via simple and low-cost chemical reduction method and self-assembling method.The change of Raman and SERS activity of carbon nanotubes/Ag nanoparticles(CNTs/Ag NPs)composites with varying size of Ag NPs are investigated by using rhodamine 6G(R6G)as a probe molecule.Meanwhile,the scattering cross section of Ag NPs and the distribution of electric field of CNTs/Ag NPs composite are simulated through finite difference time domain(FDTD)method.Surface plasmon resonance(SPR)wavelength is redshifted as the size of Ag NPs increases,and the intensity of SERS and electric field increase with Ag NPs size increasing.The experiment and simulation results show a Raman scattering enhancement factor(EF)of 108for the hybrid substrate.
基金The authors would like to thank Prof. Feng Wang, Prof. Xuedong Bai, and Prof. Kaihui Liu for helpful discussions. This work was supported by the National Basic Research Program of China (No. 2012CB932301) and the National Natural Science Foundation of China (Nos. 90921012, 11321091, 51102144, 11274190, and 51102147).
文摘Single-walled carbon nanotubes (SWCNTs) illuminated by white light should appear colored due to resonance Rayleigh scattering. However, true-color imaging of SWCNTs on substrates has not been reported, because of the extremely low scattering intensity of SWCNTs and the strong substrate scattering. Here we show that Rayleigh scattering can be greatly enhanced by the interface dipole enhancement effect. Consequently colorful SWCNTs on substrates can be directly imaged under an optical microscope by wide field supercontinuum laser illumination, which facilitates high throughput chirality assignment of individual SWCNTs. This approach, termed "Rayleigh imaging microscopy", is not restricted to SWCNTs, but widely applicable to a variety of nanomaterials, which enables the colorful nanoworld to be explored under optical microscopes.
基金Project supported by the National Natural Science Foundation of China.
文摘Carbon nanotubes were prepared by chemical vapor deposition (CVD) of hydrocarbon gas on various substrates.The effect of substrates on the growth,morphology and structure of carbon nanotubes were investigated.Aligned carbon nanotubes with high density and purity were achieved by CVD on mesoporous silica substrate.The Raman scattering of aligned carbon nanotubes was carried out,and the dependence of the phonon properties on the mi-crostructure of the nanotubes has been discussed.
文摘We study theoretically the electron transport properties in achiral carbon nanotubes under the influence of an external electric field E(t) using Boltzmann’s transport equation to derive the current-density. A negative differential conductivity (NDC) is predicted in quasi-static approximation i.e., ωτ 0 is equal to the amplitude of the AC electric field E1. The peak of the NDC intensity occurs at very weaker fields than that of superlattice under the same conditions. The peak intensity decreases and shifts to right with the increase in the amplitude of the ac field. This mechanism suppresses the domain formation and therefore could be used in terahertz frequency generation.
基金Supported by National Natural Science Foundation of China (10675157) and (10875161)the National Basic Research Program of China (Grant No. 2010CB832903)
文摘Optical and electrical properties of composites,prepared by filling of high density polyethylene(HDPE) with two kinds of multi-walled carbon nanotubes(MWNTs) differing in diameters,were explored by terahertz time-domain spectroscopy(THz-TDS) in the frequency range from 0.2 to 1.6 THz.It is found that composite with larger-diameter MWNTs possesses larger absorption coefficient and conductivity at the same concentration.The real part of the ac conductivity of the composites follows a power law dependence on frequency.And the power index is around 0.75 regardless of the MWNT concentration and diameter.The experimental data were analyzed with Cole-Cole equation under the assumption that the conductive clusters dispersed in the polymer matrix behave like dipoles and contribute mainly to the dielectric loss.It is found that both of the composites have similar values of relaxation time and distribution parameter.With increase of the MWNTs concentration,the relaxation time increases and tends to saturate at 0.7 ps after passing through the percolation threshold.
基金supported by the National Natural Science Foundation of China(Grant No 60571026)the Science and Technology Research Foundation of Heilongjiang Education Bureau of China(Grant No 11531055)
文摘This paper investigates the electromagnetic radiation characteristics of a metallic, large aspect ratio single walled carbon nanotube antenna in the terahertz frequency region below 12.5 THz. The key features of terahertz pulse have been revealed on the carbon nanotube antenna in comparison with conventional photoconductive switching. The terahertz waveforms, radiation power and their field distributions have been evaluated and are analysed. The Fourier transformed spectra over the whole frequency range demonstrate that the carbon nanotube antenna can be used as radiation source for broadband terahertz applications.
文摘Recent progress in the observation of surface-enhanced Raman scattering (SERS) is reviewed to examine the possibility of finding a novel route for the effective photoexcitation of materials. The importance of well-controlled SERS experiments on a single molecule at a single site is discussed based on the difference in the information obtained from ensemble SERS measurements using mul- tiple active sites with an uncontrolled number of molecules. A single-molecule SERS observation performed at a mechanically controllable breaking junction with a simultaneous conductivity mea- surement provides clear evidence of the drastic changes both in the intensity and in the Raman mode selectivity of the electromagnetic field generated by localized surface plasmon resonance. Careful con- trol of the field at a few-nanometer-wide gap of a metal nanodimer results in the modification of the selection rule of electronic excitation of an isolated single-walled carbon nanotube. The examples shown in this review suggest that a single-site SERS observation could be used as a novel tool to find, develop, and implement applications of plasmon-induced photoexcitation of materials.
文摘The optical effect of a nanometer or sub-nanometer interfacial layer of condensed molecules surrounding individual nanomaterials such as single-walled carbon nanotubes (SWCNTs) has been studied theoretically and experimentally. This interfacial layer, when illuminated by light, behaves as an optical dipole lattice and contributes an instantaneous near field which enhances the local field on neighboring atoms, molecules, or nanomaterials, which in turn may lead to enhanced Rayleigh scattering, Raman scattering, and fluorescence. The theory of this interface dipole enhanced effect (IDEE) predicts that a smaller distance between the nanomaterials and the plane of the interracial layer, or a larger ratio of the dielectric constants of the interfacial layer to the surrounding medium, will result in a larger field enhancement factor. This prediction is further experimentally verified by several implementations of enhanced Rayleigh scattering of SWCNTs as well as in situ Rayleigh scattering of gradually charged SWCNTs. The interface dipole enhanced Rayleigh scattering not only enables true-color real-time imaging of nanomaterials, but also provides an effective means to peer into the subtle interfacial phenomena.
文摘Recently measured thermal conductivity in single-walled carbon nanotube ropes in the temperature range 8 - 350 K has been explained using an anisotropic dynamical model which not only takes into account the quasi two-dimensional nature of the folded graphene sheets that forms the nanotubes, but also the intertube coupling, in addition to the phonon frequency and dimensionality dependent relaxation time of phonon-phonon scattering and interaction.
文摘针对太赫兹探测器的研究现状,分析研究了现有太赫兹探测器的优缺点,并对热释电型太赫兹探测器的热释电材料和吸收材料进行研究,提出了一种基于铌镁钛酸铅(PMNT)晶片的新型太赫兹探测器的设计和制作方法。用PMNT晶片作为热释电材料,碳纳米管作为吸收材料,使用精密减薄抛光工艺和溅射电极工艺等工艺技术,完成了新型热释电太赫兹探测器的设计与制作。并利用该探测器设计了一款太赫兹功率计,经测试,该功率计在0.1~30 THz宽频段、0.5~100 m W大功率动态范围内,功率测量准确度达到了±10%,综合指标达到国际同类产品先进水平,应用效果良好。