Using data from the European remote sensing scatterometer (ERS-2) from July 1997 to August 1998, glob- al distributions of the air-sea CO2 transfer velocity and flux are retrieved. A new model of the air-sea CO2 tra...Using data from the European remote sensing scatterometer (ERS-2) from July 1997 to August 1998, glob- al distributions of the air-sea CO2 transfer velocity and flux are retrieved. A new model of the air-sea CO2 transfer velocity with surface wind speed and wave steepness is proposed. The wave steepness (6) is re- trieved using a neural network (NN) model from ERS-2 scatterometer data, while the wind speed is directly derived by the ERS-2 scatterometer. The new model agrees well with the formulations based on the wind speed and the variation in the wind speed dependent relationships presented in many previous studies can be explained by this proposed relation with variation in wave steepness effect. Seasonally global maps of gas transfer velocity and flux are shown on the basis of the new model and the seasonal variations of the transfer velocity and flux during the 1 a period. The global mean gas transfer velocity is 30 cm/h after area-weighting and Schmidt number correction and its accuracy remains calculation with in situ data. The highest transfer velocity occurs around 60°N and 60°S, while the lowest on the equator. The total air to sea CO2 flux (calcu- lated by carbon) in that year is 1.77 Pg. The strongest source of CO2 is in the equatorial east Pacific Ocean, while the strongest sink is in the 68°N. Full exploration of the uncertainty of this estimate awaits further data. An effectual method is provided to calculate the effect of waves on the determination of air-sea CO2 transfer velociW and fluxes with ERS-2 scatterometer data.展开更多
基金Public Science and Technology Research Funds Projects of Ocean under contract No.200905012a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD) of China
文摘Using data from the European remote sensing scatterometer (ERS-2) from July 1997 to August 1998, glob- al distributions of the air-sea CO2 transfer velocity and flux are retrieved. A new model of the air-sea CO2 transfer velocity with surface wind speed and wave steepness is proposed. The wave steepness (6) is re- trieved using a neural network (NN) model from ERS-2 scatterometer data, while the wind speed is directly derived by the ERS-2 scatterometer. The new model agrees well with the formulations based on the wind speed and the variation in the wind speed dependent relationships presented in many previous studies can be explained by this proposed relation with variation in wave steepness effect. Seasonally global maps of gas transfer velocity and flux are shown on the basis of the new model and the seasonal variations of the transfer velocity and flux during the 1 a period. The global mean gas transfer velocity is 30 cm/h after area-weighting and Schmidt number correction and its accuracy remains calculation with in situ data. The highest transfer velocity occurs around 60°N and 60°S, while the lowest on the equator. The total air to sea CO2 flux (calcu- lated by carbon) in that year is 1.77 Pg. The strongest source of CO2 is in the equatorial east Pacific Ocean, while the strongest sink is in the 68°N. Full exploration of the uncertainty of this estimate awaits further data. An effectual method is provided to calculate the effect of waves on the determination of air-sea CO2 transfer velociW and fluxes with ERS-2 scatterometer data.