期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Digital twin intelligent system for industrial internet of things-based big data management and analysis in cloud environments 被引量:3
1
作者 Christos L.STERGIOU Kostas E.PSANNIS 《Virtual Reality & Intelligent Hardware》 2022年第4期279-291,共13页
This work surveys and illustrates multiple open challenges in the field of industrial Internet of Things(IoT)-based big data management and analysis in cloud environments.Challenges arising from the fields of machine ... This work surveys and illustrates multiple open challenges in the field of industrial Internet of Things(IoT)-based big data management and analysis in cloud environments.Challenges arising from the fields of machine learning in cloud infrastructures,artificial intelligence techniques for big data analytics in cloud environments,and federated learning cloud systems are elucidated.Additionally,reinforcement learning,which is a novel technique that allows large cloud-based data centers,to allocate more energy-efficient resources is examined.Moreover,we propose an architecture that attempts to combine the features offered by several cloud providers to achieve an energy-efficient industrial IoT-based big data management framework(EEIBDM)established outside of every user in the cloud.IoT data can be integrated with techniques such as reinforcement and federated learning to achieve a digital twin scenario for the virtual representation of industrial IoT-based big data of machines and room tem-peratures.Furthermore,we propose an algorithm for determining the energy consumption of the infrastructure by evaluating the EEIBDM framework.Finally,future directions for the expansion of this research are discussed. 展开更多
关键词 Machine learning IoT Big data Cloud computing MANAGEMENT ANALYTICS Digital twin scenario Energy efficiency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部