期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Pragmatic Method to Determine Transient Stability Constrained with Interface Real Power Flow Limits via Power System Scenario Similarity 被引量:1
1
作者 Xianzhuang Liu Yong Min +3 位作者 Lei Chen Xiaohua Zhang Changyou Feng Wei Hu 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第1期131-141,共11页
In practical power systems,operators generally keep interface flowing under the transient stability constrained with interface real power flow limits(TS-IRPFL)to guarantee transient stability of the system.Many method... In practical power systems,operators generally keep interface flowing under the transient stability constrained with interface real power flow limits(TS-IRPFL)to guarantee transient stability of the system.Many methods of computing TS-IRPFL have been proposed.However,in practice,the method widely used to determine TS-IRPFL is based on selection and analysis of typical scenarios as well as scenario matching.First,typical scenarios are selected and analyzed to obtain accurate limits,then the scenario to be analyzed is matched with a certain typical scenario,whose limit is adopted as the forecast limit.In this paper,following the steps described above,a pragmatic method to determine TS-IRPFL is proposed.The proposed method utilizes data-driven tools to improve the steps of scenario selection and matching.First of all,we formulate a clear model of power system scenario similarity.Based on the similarity model,we develop a typical scenario selector by clustering and a scenario matcher by nearest neighbor algorithm.The proposed method is pragmatic because it does not change the existing procedure.Moreover,it is much more reasonable than the traditional method.Test results verify the validity of the method. 展开更多
关键词 Clustering data-driven nearest neighbor power system scenario similarity transient stability constrained interface real power flow limit(TSC-IRPFL) typical scenario.
原文传递
Recognition of Similar Weather Scenarios in Terminal Area Based on Contrastive Learning 被引量:2
2
作者 CHEN Haiyan LIU Zhenya +1 位作者 ZHOU Yi YUAN Ligang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第4期425-433,共9页
In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is design... In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is designed to improve the number and quality of weather scenarios samples according to the characteristics of convective weather images.Secondly,in the pre-trained recognition model of SWS-CL,a loss function is formulated to minimize the distance between the anchor and positive samples,and maximize the distance between the anchor and the negative samples in the latent space.Finally,the pre-trained SWS-CL model is fine-tuned with labeled samples to improve the recognition accuracy of SWS.The comparative experiments on the weather images of Guangzhou terminal area show that the proposed data augmentation method can effectively improve the quality of weather image dataset,and the proposed SWS-CL model can achieve satisfactory recognition accuracy.It is also verified that the fine-tuned SWS-CL model has obvious advantages in datasets with sparse labels. 展开更多
关键词 air traffic control terminal area similar weather scenarios(SWSs) image recognition contrastive learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部