Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence...Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence for the implementation of advanced teaching models in future nursing education. Methods: Enrolled 60 nurses who took the IV infusion therapy training program in our hospital from January 2022 to December 2023 for research. 30 nurses who were trained in traditional teaching models from January to December 2022 were selected as the control group, and 30 nurses who were trained with simulation-based teaching models with methods including simulated patients, internet, online meetings which can be replayed and scenario simulation, etc. from January to December 2023 were selected as the experimental group. Evaluated the learning outcomes based on the Competency Inventory for Nursing Students (CINS), Problem-Solving Inventory (PSI), comprehensive learning ability, scientific research ability, and proficiency in the theoretical knowledge and practical skills of IV infusion therapy. Nursing quality, the incidence of IV infusion therapy complications and nurse satisfaction with different teaching models were also measured. Results: The scientific research ability, PSI scores, CINS scores, and comprehensive learning ability of the experimental group were better than those of the control group (P 0.05), and their assessment results of practical skills, nursing quality of IV infusion therapy during training, and satisfaction with teaching models were all better than those of the control group with statistical significance (P < 0.05). The incidence of IV infusion therapy complications in the experimental group was lower than that in the control group, indicating statistical significance (P < 0.05). Conclusions: Teaching models based on patient simulators combined with Internet Plus scenario simulation enable nursing students to learn more directly and practice at any time and in any place, and can improve their proficiency in IV infusion theoretical knowledge and skills (e.g. PICC catheterization), core competencies, problem-solving ability, comprehensive learning ability, scientific research ability and the ability to deal with complicated cases. Also, it helps provide high-quality nursing education, improve the nursing quality of IV therapy, reduce the incidence of related complications, and ensure the safety of patients with IV therapy.展开更多
Based on the logical causal relationship and taking Liaoning Province, China, which is the Chinese traditional industrial base and is in the stage of accelerated urbanisation, as a case study, this study builds the '...Based on the logical causal relationship and taking Liaoning Province, China, which is the Chinese traditional industrial base and is in the stage of accelerated urbanisation, as a case study, this study builds the 'Urbanisation-Energy Consumption-COn Emissions System Dynamics (UEC-SD)' model using a system dynamics method. The UEC-SD model is applied to analyse the effect of the ar- banisation process on the regional energy structure and CO2 emissions, followed by simulation of future production and living energy consumption structure as well as the evolutionary trend of CO2 emissions of three urbanisation scenarios (low speed, intermediate speed and high speed) under the assumed boundary conditions in urban and rural areas of Liaoning Province, China. The results show that the urbanisation process can alter production and the living energy consumption structure and thereby change regional CO2 emissions. An increase in the urbanisation rate in case area will lead to regional COz emissions rising in the short term, but when the urbanisation rate approaches 80%, CO2 emissions will reach a peak value and then decrease. Comparison of different urbanisation rates showed that pro- duction and living energy consumption exhibit different directions of change and rules in urban and rural areas. The effect of urbanisa- tion on CO2 emissions and energy structure is not direct, and urbanisation can increase the differences in energy and CO2 emissions between urban and rural areas caused by the industrial structure, technical level and other factors.展开更多
Mountainous area makes up 22% of global land, and rational land use in this area is important for sustainable development. Mentougou district has been positioned as an ecological conservation development zone of Beiji...Mountainous area makes up 22% of global land, and rational land use in this area is important for sustainable development. Mentougou district has been positioned as an ecological conservation development zone of Beijing and significant land use changes have taken place since 2004. With the combination of GIS and Dinamica EGO(Environment for Geoprocessing Objects) model, the quantitative structure and spatial distribution of land use in Mentougou from 2006 to 2014 are analyzed in this paper. Considering topography has influence on the action mode of driving factors, the research area is divided into two parts based on elevation, mountainous area above 300 m, plain and shallow mountainous area below 300 m. Based on cellular automata theory, the probability of land use change is calculated by Weights of Evidence method and the spatial distribution of land use is simulated by means of two complementary spatial transition functions: Expander and Patcher. Land use pattern of Menougou in 2030 for three kinds of scenarios: trend development, rapid development and ecological protection are simulated. The comparison shows that the trend development scenario is more reasonable based on social, economic and environmental considerations and other scenarios provide a reference for improving irrational land use.展开更多
This study investigated and simulated land use patterns in Beijing for the year 2000 and the year 2005 from the actual land use data for the year 1995 and the year 2000,respectively,by combining spatial land allocatio...This study investigated and simulated land use patterns in Beijing for the year 2000 and the year 2005 from the actual land use data for the year 1995 and the year 2000,respectively,by combining spatial land allocation simulation using the CLUE-S model,and numerical land demand prediction using the Markov model.The simulations for 2000 and 2005 were confirmed to be generally accurate using Kappa indices.Then the land-use scenarios for Beijing in 2015 were simulated assuming two modes of development:1) urban development following existing trends;and 2) under a strict farmland control.The simulations suggested that under either mode,urbanized areas would expand at the expense of land for other uses.This expansion was predicted to dominate the land-use conversions between 2005 and 2015,and was expected to be accompanied by an extensive loss of farmland.The key susceptible to land-use changes were found to be located at the central urban Beijing and the surrounding regions including Yanqing County,Changping District and Fangshan District.Also,the simulations predicted a considerable expansion of urban/suburban areas in the mountainous regions of Beijing,suggesting a need for priority monitoring and protection.展开更多
With high carbon emission,the low-carbon transition of power sector will be critical for China to achieve the carbon peaking and carbon neutrality goals.The power transition will have an impact on the economy and empl...With high carbon emission,the low-carbon transition of power sector will be critical for China to achieve the carbon peaking and carbon neutrality goals.The power transition will have an impact on the economy and employment through the value chain.Quantifying the impact is important for China's future energy and welfare policies.This study adopts input‒output model to analyze the impact on economy and employment based on accelerated and slow power transition scenarios.The results show that the low-carbon power transition will have a negative impact on coal power and coal mining and washing sectors,while a positive impact on machine manufacturing and equipment sector.Low-carbon power transition will have a positive economic and employment effect to promote inclusive growth.By 2060,economic output will increase by about 8.50 trillion CNY,value-added by about 3.39 trillion CNY,and employment will increase by about 3.74 million.Although slower coal power transition can stabilize the economic and employment effect in the short and medium run,accelerating the power transition will produce more positive effect and lower job losses by coal power in the long run.By 2060,accelerating transition will boost output by 8.21%,value-added by 8.20%and jobs by 7.97%.Accordingly,the government should establish an all-round just low-carbon transition mechanism.展开更多
Explicitly identifying the spatial distribution of ecological transition zones(ETZs)and simulating their response to climate scenarios is of significance in understanding the response and feedback of ecosystems to glo...Explicitly identifying the spatial distribution of ecological transition zones(ETZs)and simulating their response to climate scenarios is of significance in understanding the response and feedback of ecosystems to global climate change.In this study,a quantitative spatial identification method was developed to assess ETZ distribution in terms of the improved Holdridge life zone(iHLZ)model.Based on climate observations collected from 782 weather stations in China in the T0(1981–2010)period,and the Intergovernmental Panel on Climate Change Coupled Model Intercomparison Project(IPCC CMIP5)RCP2.6,RCP4.5,and RCP8.5 climate scenario data in the T1(2011–2040),T2(2041–2070),and T3(2071–2100)periods,the spatial distribution of ETZs and their response to climate scenarios in China were simulated in the four periods of T0,T1,T2,and T3.Additionally,a spatial shift of mean center model was developed to quantitatively calculate the shift direction and distance of each ETZ type during the periods from T0 to T3.The simulated results revealed 41 ETZ types in China,accounting for 18%of the whole land area.Cold temperate grassland/humid forest and warm temperate arid forest(564,238.5 km~2),cold temperate humid forest and warm temperate arid/humid forest(566,549.75 km~2),and north humid/humid forest and cold temperate humid forest(525,750.25 km~2)were the main ETZ types,accounting for 35%of the total ETZ area in China.Between 2010 and 2100,the area of cold temperate desert shrub and warm temperate desert shrub/thorn steppe ETZs were projected to increase at a rate of 4%per decade,which represented an increase of 3604.2,10063.1,and 17,242 km~2 per decade under the RCP2.6,RCP4.5,and RCP8.5 scenarios,respectively.The cold ETZ was projected to transform to the warm humid ETZ in the future.The average shift distance of the mean center in the north wet forest and cold temperate desert shrub/thorn grassland ETZs was generally larger than that of other ETZs,with the mean center moving to the northeast and the shift distance being more than 150 km during the periods from T0 to T3.In addition,with a gradual increase of temperature and precipitation,the ETZs in northern China displayed a shifting northward trend,while the area of ETZs in southern China decreased gradually,and their mean center moved to high-altitude areas.The effects of climate change on ETZs presented an increasing trend in China,especially in the Qinghai-Tibet Plateau.展开更多
Under the demand of urban expansion and the constraints of China’s’National Main Functional Area Planning’policy,urban agglomerations are facing with a huge contradiction between land utilization and ecological pro...Under the demand of urban expansion and the constraints of China’s’National Main Functional Area Planning’policy,urban agglomerations are facing with a huge contradiction between land utilization and ecological protection,especially for HarbinChangchun urban agglomeration who owns a large number of land used for the protection of agricultural production and ecological function.To alleviate this contradiction and provide insight into future land use patterns under different ecological constraints’scenarios,we introduced the patch-based land use simulation(PLUS)model and simulated urban expansion of the Harbin-Changchun urban agglomeration.After verifying the accuracy of the simulation result in 2018,we predicted future urban expansion under the constraints of three different ecological scenarios in 2026.The morphological spatial pattern analysis(MSPA)method and minimum cumulative resistance(MCR)model were also introduced to identify different levels of ecological security pattern(ESP)as ecological constraints.The predicted result of the optimal protection(OP)scenario showed less proportion of water and forest than those of natural expansion(NE)and basic protection(BP)scenarios in 2026.The conclusions are that the PLUS model can improve the simulation accuracy at urban agglomeration scale compared with other cellular automata(CA)models,and the future urban expansion under OP scenario has the least threat to the ecosystem,while the expansion under the natural expansion(NE)scenario poses the greatest threat to the ecosystem.Combined with the MSPA and MCR methods,PLUS model can also be used in other spatial simulations of urban agglomerations under ecological constraints.展开更多
Rapid urbanization leads to dramatic changes in land use patterns,and the land use/cover change(LUCC)can reflect the spatial impact of urbanization on the ecological environment.Simulating the process of LUCC and pred...Rapid urbanization leads to dramatic changes in land use patterns,and the land use/cover change(LUCC)can reflect the spatial impact of urbanization on the ecological environment.Simulating the process of LUCC and predicting the ecological risk future changes can provide supports for urban ecological management.Taking the Yangtze River Delta Urban Agglomeration(YRDUA),China as the study area,four developmental scenarios were set on the basis of the land use data from 2005 to 2015.The temporal land use changes were predicted by the integration of the system dynamic and the future land use simulation(SD-FLUS)model,and the geographically weighted regression(GWR)model was used to identify the spatial heterogeneity and evolution characteristics between ecological risk index(ERI)and socio-economic driving forces.Results showed that:1)From 2005 to 2015,the expansion of construction land(7670.24 km^(2))mainly came from the occupation of cultivated land(7854.22 km2).The Kappa coefficient of the SD-FLUS model was 0.886,indicating that this model could be used to predict the future land use changes in the YRDUA.2)Gross domestic production(GDP)and population density(POP)showed a positive effect on the ERI,and the impact of POP exceeded that of GDP.The ERI showed the characteristics of zonal diffusion and a slight upward trend,and the high ecological risk region increased by 6.09%,with the largest increase.3)Under different developmental scenarios,the land use and ecological risk patterns varied.The construction land is increased by 5.76%,7.41%,5.25%and 6.06%,respectively.And the high ecological risk region accounted for 12.71%,15.06%,11.89%,and 12.94%,correspondingly.In Scenario D,the structure of land use and ecological risk pattern was better compared with other scenarios considering the needs of rapid economic and ecological protection.This study is helpful to understand the spatio-temporal pattern and demand of land use types,grasp the ecological security pattern of large-scale areas,and provide scientific basis for the territory development of urban agglomeration in the future.展开更多
The socio-ecological environmental problem caused by the development of coalbed methane(CBM)is becoming more serious,so it is very significant for accelerating the development of CBM industrialization to identify the ...The socio-ecological environmental problem caused by the development of coalbed methane(CBM)is becoming more serious,so it is very significant for accelerating the development of CBM industrialization to identify the main influential factors of socioecological environmental risks and take effective risk prevention measures.Based on the triangular fuzzy number method,this paper firstly establishes a comprehensive correlation matrix.Then,the affected factors of socio-ecological environmental risks are analyzed by the DEMATEL method during the development of CBM.Then according to the aspects of centrality and causality,the key indicators are determined.Furthermore,the scenario simulation based on the FCM,the steady-state value and the comprehensive importance of key indicators,and the core indicators are selected.Finally,the scenario simulation of risk management countermeasure is done.The results show that:①The index weights are calculated by the triangular fuzzy numbers,and the correlation matrix in DEMATEL is obtained by the weight ratio,which reduces the shortcomings and the subjectivity of traditional DEMATEL method.②The correlation matrix in FCM is established based on the comprehensive correlation matrix in the above improved DEMATEL,which not only makes the FCM model more comprehensive and reduces the difficulty that the FCM correlation matrix is obtained considering the indirect influence relationship between indicators,but also makes up for the disadvantages that DEMATEL excludes during the selection of the core indexes,which are the considerations of the dynamic change of the importance of the indicators.③The rate of forestry and grass coverage,the ratio of investment in prevention and construction,the pollution index of soil Merlot,the reliability of machinery and equipment,the standard evaluation index of major pollution factors of underground water,and the ability of personal risk prevention are the key indicators,in which the rate of forestry and grass coverage,the ratio of investment in prevention and construction,and the reliability of machinery and equipment are the core indicators and are extremely important for the management of socio-ecological environmental risks during the development of coalbed methane.④The results of the scenario simulation of risk management countermeasure show that the core variables affect the socio-ecological environmental risks through such indicators as the degree of production mechanization,the degree of demolition and resettlement,and the ratio of economic loss by the influenced mechanism analysis;the ratio of investment in prevention and construction has the greatest impact on the socio-ecological environment risks in the early stage of CMB development,while the rate of forestry and grass coverage is the most important in the middle and late stages by the influenced result analysis.Therefore,this paper puts forward some corresponding stage suggestions on the prevention and control of socio-ecological environmental risks during the CMB development.In the early stage of CMB development,the ratio of investment in prevention and construction should be increased.In the middle stage,it is very important to reduce the damage of vegetation regions and to improve the reliability of machinery and equipment;in the late stage,the investment in prevention and construction should be increased steadily and the recovery of damaged vegetation areas should be focused on.展开更多
Modelling scenarios of land use change and their impacts in typical regions are helpful to investigate the mechanism between land use and ecological systems and process the land use allocation under the ecological sec...Modelling scenarios of land use change and their impacts in typical regions are helpful to investigate the mechanism between land use and ecological systems and process the land use allocation under the ecological security. A system dynamics (SD) model with the aim to modelling scenarios of land use change and assessing ecological impact in northern China in the next 50 years is developed here. The accuracy assessment with the historic data from 1990 to 2001 indicated the SD model is robust. After the different 'what-if' scenarios controlled by GDP, population, market, and technology advancement were built, the different scenarios of land use change in northern China from 2000 to 2050 were simulated with their ecological impact assessed. The result suggested that such factors as GDP, population, market and technology have a strong relationship with land use structural change in northern China. It also indicated that such measures as strict controlling of population increase, importing some food to keep the supply-demand balance in the region, and improving agricultural technology will be the guarantee of regional sustainable development with fast economic growth and the obvious land use structural improvement at the same time.展开更多
The simulation composability is one of important development directions in simulation domain. The key issue is the semantic composability. Currently there is no feasible approach to realize the effective semantic repr...The simulation composability is one of important development directions in simulation domain. The key issue is the semantic composability. Currently there is no feasible approach to realize the effective semantic representation and composition of simulation components. Based on domain knowledge and Web Ontology Language (OWL), this paper proposes a composable simulation framework, which includes conceptual model semantics, model components semantics, model framework semantics, and simulation scenario semantics. Additionally, all the semantics are utilized in the model components development process, the simulation system development process, and the simulation system execution process respectively. The consistency checking among those semantics is also proposed. The detailed mapping processes between different semantic models can help to build the domain ontology driven composable simulation system.展开更多
Model simulation and scenario change analysis are the core contents of the future land-use change(LUC) study. In this paper, land use status data of the Three Gorges Reservoir Region(TGRR) in 1990 was used as base...Model simulation and scenario change analysis are the core contents of the future land-use change(LUC) study. In this paper, land use status data of the Three Gorges Reservoir Region(TGRR) in 1990 was used as base data. The relationship between driving factors and land-use change was analyzed by using binary logistic stepwise regression analysis, based on which land use in 2010 was simulated by CLUE-S model. After the inspection and determination of main parameters impacting on driving factors of land use in the TGRR, land use of this region in 2030 was simulated based on four scenarios, including natural growth, food security, migration-related construction and ecological conservation. The results were shown as follows:(1) The areas under ROC curves of land-use types(LUTs) were both greater than 0.8 under the analysis and inspection of binary logistic model. These LUTs include paddy field, dryland, woodland, grassland, construction land and water area. Therefore, it has a strong interpretation ability of driving factors on land use, which can be used in the estimation of land use probability distribution.(2) The Kappa coefficients, verified from the result of land-use simulation in 2010, were shown of paddy field 0.9, dryland 0.95, woodland 0.97, grassland 0.84, construction land 0.85 and water area 0.77. So the results of simulation could meet the needs of future simulation and prediction.(3) The results of multi-scenario simulation showed a spatial competitive relationship between different LUTs, and an influence on food security, migration-related construction and ecological conservation in the TGRR, including some land use actions such as the large-scale conversion from paddy field to dryland, the occupation on cultivated land, woodland and grassland for rapid expansion of construction land, the reclamation of woodland and grassland into cultivated land, returning steep sloping farmland back into woodland and grassland. Therefore, it is necessary to balance the needs of various aspects in land use optimization, to achieve the coordination between socio-economy and ecological environment.展开更多
Land use/cover change(LUCC)is a major factor affecting net primary production(NPP).According to the LUCC of the Loess Plateau from 2005 to 2015,the LUCC patterns in 2025 in three scenarios were predicted by using the ...Land use/cover change(LUCC)is a major factor affecting net primary production(NPP).According to the LUCC of the Loess Plateau from 2005 to 2015,the LUCC patterns in 2025 in three scenarios were predicted by using the Future Land Use Simulation(FLUS)model.Furthermore,taking the average NPP of various land use/cover types in 16 years as the reference scale,the changes in NPP in multi-scenario simulations are predicted and analyzed,and the impact of different land use/cover transfers on NPP is quantified.The results are as follows:(1)The land use/cover changes greatly in the baseline and fast development scenarios,and changes relatively little in the ecological protection scenarios.(2)The changes in NPP in different scenarios reflected the significant difference in the ecological protection effect.All the three scenarios promote an NPP increase,but the ecological protection scenario can promote NPP increases the most.(3)The changes in NPP caused by LUCC in the three scenarios reflected the significant difference in the various land use/cover types protection effect.Analyzing and predicting NPP changes in multi-scenario LUCC simulations in the future can provide a theoretical basis for decision makers to judge the future changes in ecological environments and ecological protection effects against different policy backgrounds.展开更多
To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based...To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.展开更多
The conceptual model is the first time abstraction ceptual model description method based on the UML and the of the real world. The traditional con- text usually has the semantic ambiguity problem. The formal descript...The conceptual model is the first time abstraction ceptual model description method based on the UML and the of the real world. The traditional con- text usually has the semantic ambiguity problem. The formal description method lacks the mechanism of integrity and consistency check. Therefore both of them cannot support the simulation scenario description and the model compos- ability. A simulation conceptual description method based on ontology is put forward. According to the OWL language which was put forward by the W3C organization, a conceptual model description language is established. The OWL language semantic element in the description function in the mili- tary conceptual model is introduced. Then two layers of the military conceptual model framework are built up based on the general ontology and the domain ontology. In the general ontology, the class and property definition are given. While in the domain ontology, they are extended and a relat- ed example is given. The technique advantages of our method include the mechanism of conceptual model consistency and integrity check, the support of composable simulation models, and automatic creation of simulation scenario.展开更多
This study achieved the construction of earthquake disaster scenarios based on physics-based methods-from fault dynamic rupture to seismic wave propagation-and then population and economic loss estimations.The physics...This study achieved the construction of earthquake disaster scenarios based on physics-based methods-from fault dynamic rupture to seismic wave propagation-and then population and economic loss estimations.The physics-based dynamic rupture and strong ground motion simulations can fully consider the three-dimensional complexity of physical parameters such as fault geometry,stress field,rock properties,and terrain.Quantitative analysis of multiple seismic disaster scenarios along the Qujiang Fault in western Yunnan Province in southwestern China based on different nucleation locations was achieved.The results indicate that the northwestern segment of the Qujiang Fault is expected to experience significantly higher levels of damage compared to the southeastern segment.Additionally,there are significant variations in human losses,even though the economic losses are similar across different scenarios.Dali Bai Autonomous Prefecture,Chuxiong Yi Autonomous Prefecture,Yuxi City,Honghe Hani and Yi Autonomous Prefecture,and Wenshan Zhuang and Miao Autonomous Prefecture were identified as at medium to high seismic risks,with Yuxi and Honghe being particularly vulnerable.Implementing targeted earthquake prevention measures in Yuxi and Honghe will significantly mitigate the potential risks posed by the Qujiang Fault.Notably,although the fault is within Yuxi,Honghe is likely to suffer the most severe damage.These findings emphasize the importance of considering rupture directivity and its influence on ground motion distribution when assessing seismic risk.展开更多
Regional land use change is the main cause of the ecosystem carbon storage changes by affecting emission and sink process.However,there has been little research on the influence of land use changes for ecosystem carbo...Regional land use change is the main cause of the ecosystem carbon storage changes by affecting emission and sink process.However,there has been little research on the influence of land use changes for ecosystem carbon storage at both temporal and spatial scales.For this study,the Qihe catchment in the southern part of the Taihang Mountains was taken as an example;its land use change from 2005 to 2015 was analyzed,the Markov-CLUE-S composite model was used to predict land use patterns in 2025 under natural growth,cultivated land protection and ecological conservation scenario,and the land use data were used to evaluate ecosystem carbon storage under different scenarios for the recent 10-year interval and the future based on the carbon storage module of the In VEST model.The results show the following:(1) the ecosystem carbon storage and average carbon density of Qihe catchment were 3.16×107 t and 141.9 t/ha,respectively,and decreased by 0.07×107 t and 2.89 t/ha in the decade evaluated.(2) During 2005–2015,carbon density mainly decreased in low altitude areas.For high altitude area,regions with increased carbon density comprised a similar percentage to regions with decreased carbon density.The significant increase of the construction areas in the middle and lower reaches of Qihe and the degradation of upper reach woodland were core reasons for carbon density decrease.(3) For 2015–2025,under natural growth scenario,carbon storage and carbon density also significantly decrease,mainly due to the decrease of carbon sequestration capacity in low altitude areas;under cultivated land protection scenario,the decrease of carbon storage and carbon density will slow down,mainly due to the increase of carbon sequestration capacity in low altitude areas;under ecological conservation scenario,carbon storage and carbon density significantly increase and reach 3.19×107 t and 143.26 t/ha,respectively,mainly in regions above 1100 m in altitude.Ecological conservation scenario can enhance carbon sequestration capacity but cannot effectively control the reduction of cultivated land areas.Thus,land use planning of research areas should consider both ecological conservation and cultivated land protection scenarios to increase carbon sink and ensure the cultivated land quality and food safety.展开更多
Is Chinese urbanization going to take a long time, or can its development goal be achieved by the government in a short time? What is the highest stable urbanization level that China can reach? When can China complete...Is Chinese urbanization going to take a long time, or can its development goal be achieved by the government in a short time? What is the highest stable urbanization level that China can reach? When can China complete its urbanization? To answer these questions, this paper presents a system dynamic(SD) model of Chinese urbanization, and its validity and simulation are justified by a stock-flow test and a sensitivity analysis using real data from 1998 to 2013. Setting the initial conditions of the simulation by referring to the real data of 2013, the multi-scenario analysis from 2013 to 2050 reveals that Chinese urbanization will reach a level higher than 70% in 2035 and then proceed to a slow urbanization stage regardless of the population policy and GDP growth rate settings; in 2050, Chinese urbanization levels will reach approximately 75%, which is a stable and equilibrium level for China. Thus, it can be argued that Chinese urbanization is a long social development process that will require approximately20 years to complete and that the ultimate urbanization level will be 75–80%, which means that in the distant future, 20–25% of China's population will still settle in rural regions of China.展开更多
Climate-induced drought has exerted obvious impacts on land systems in northern China.Although recent reports by the Intergovernmental Panel on Climate Change(IPCC) have suggested a high possibility of climate-induced...Climate-induced drought has exerted obvious impacts on land systems in northern China.Although recent reports by the Intergovernmental Panel on Climate Change(IPCC) have suggested a high possibility of climate-induced drought in northern China,the potential impacts of such drying trends on land systems are still unclear.Land use models are powerful tools for assessing the impacts of future climate change.In this study,we first developed a land use scenario dynamic model(iLUSD) by integrating system dynamics and cellular automata.Then,we designed three drying trend scenarios(reversed drying trend,gradual drying trend,and acceleration of drying trend) for the next 25 years based on the IPCC emission scenarios and considering regional climatic predictions in northern China.Finally,the impacts of drying trend scenarios on the land system were simulated and compared.An accuracy assessment with historic data covering 2000 to 2005 indicated that the developed model is competent and reliable for understanding complex changes in the land use system.The results showed that water resources varied from 441.64 to 330.71 billion m3 among different drying trend scenarios,suggesting that future drying trends will have a significant influence on water resource and socioeconomic development.Under the pressures of climate change,water scarcity,and socioeconomic development,the ecotone(i.e.,transition zone between cropping area and nomadic area) in northern China will become increasingly vulnerable and hotspots for land-use change.Urban land and grassland would have the most prominent response to the drying trends.Urban land will expand around major metropolitan areas and the conflict between urban and cultivated land will become more severe.The results also show that previous ecological control measures adopted by the government in these areas will play an important role in rehabilitating the environment.In order to achieve a sustainable development in northern China,issues need to be addressed such as how to arrange land use structure and patterns rationally,and how to adapt to the pressures of climate change and socioeconomic development together.展开更多
文摘Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence for the implementation of advanced teaching models in future nursing education. Methods: Enrolled 60 nurses who took the IV infusion therapy training program in our hospital from January 2022 to December 2023 for research. 30 nurses who were trained in traditional teaching models from January to December 2022 were selected as the control group, and 30 nurses who were trained with simulation-based teaching models with methods including simulated patients, internet, online meetings which can be replayed and scenario simulation, etc. from January to December 2023 were selected as the experimental group. Evaluated the learning outcomes based on the Competency Inventory for Nursing Students (CINS), Problem-Solving Inventory (PSI), comprehensive learning ability, scientific research ability, and proficiency in the theoretical knowledge and practical skills of IV infusion therapy. Nursing quality, the incidence of IV infusion therapy complications and nurse satisfaction with different teaching models were also measured. Results: The scientific research ability, PSI scores, CINS scores, and comprehensive learning ability of the experimental group were better than those of the control group (P 0.05), and their assessment results of practical skills, nursing quality of IV infusion therapy during training, and satisfaction with teaching models were all better than those of the control group with statistical significance (P < 0.05). The incidence of IV infusion therapy complications in the experimental group was lower than that in the control group, indicating statistical significance (P < 0.05). Conclusions: Teaching models based on patient simulators combined with Internet Plus scenario simulation enable nursing students to learn more directly and practice at any time and in any place, and can improve their proficiency in IV infusion theoretical knowledge and skills (e.g. PICC catheterization), core competencies, problem-solving ability, comprehensive learning ability, scientific research ability and the ability to deal with complicated cases. Also, it helps provide high-quality nursing education, improve the nursing quality of IV therapy, reduce the incidence of related complications, and ensure the safety of patients with IV therapy.
基金Under the auspices of National Natural Science Foundation of China(No.41301637,41101117,41271186)Key Program of National Natural Science Foundation of China(No.71133003)
文摘Based on the logical causal relationship and taking Liaoning Province, China, which is the Chinese traditional industrial base and is in the stage of accelerated urbanisation, as a case study, this study builds the 'Urbanisation-Energy Consumption-COn Emissions System Dynamics (UEC-SD)' model using a system dynamics method. The UEC-SD model is applied to analyse the effect of the ar- banisation process on the regional energy structure and CO2 emissions, followed by simulation of future production and living energy consumption structure as well as the evolutionary trend of CO2 emissions of three urbanisation scenarios (low speed, intermediate speed and high speed) under the assumed boundary conditions in urban and rural areas of Liaoning Province, China. The results show that the urbanisation process can alter production and the living energy consumption structure and thereby change regional CO2 emissions. An increase in the urbanisation rate in case area will lead to regional COz emissions rising in the short term, but when the urbanisation rate approaches 80%, CO2 emissions will reach a peak value and then decrease. Comparison of different urbanisation rates showed that pro- duction and living energy consumption exhibit different directions of change and rules in urban and rural areas. The effect of urbanisa- tion on CO2 emissions and energy structure is not direct, and urbanisation can increase the differences in energy and CO2 emissions between urban and rural areas caused by the industrial structure, technical level and other factors.
基金supported by the National Natural Science Foundation of China under(Grant No.41877533)Beijing Social Science Foundation(Grant No.18GLB014)
文摘Mountainous area makes up 22% of global land, and rational land use in this area is important for sustainable development. Mentougou district has been positioned as an ecological conservation development zone of Beijing and significant land use changes have taken place since 2004. With the combination of GIS and Dinamica EGO(Environment for Geoprocessing Objects) model, the quantitative structure and spatial distribution of land use in Mentougou from 2006 to 2014 are analyzed in this paper. Considering topography has influence on the action mode of driving factors, the research area is divided into two parts based on elevation, mountainous area above 300 m, plain and shallow mountainous area below 300 m. Based on cellular automata theory, the probability of land use change is calculated by Weights of Evidence method and the spatial distribution of land use is simulated by means of two complementary spatial transition functions: Expander and Patcher. Land use pattern of Menougou in 2030 for three kinds of scenarios: trend development, rapid development and ecological protection are simulated. The comparison shows that the trend development scenario is more reasonable based on social, economic and environmental considerations and other scenarios provide a reference for improving irrational land use.
基金Under the auspices of National Natural Science Foundation of China (No. 70903061,41171440)National Public Benefit (Land) Research Foundation of China (No. 201111014)Fundamental Research Funds for the Central Universities (No. 2011YXL055)
文摘This study investigated and simulated land use patterns in Beijing for the year 2000 and the year 2005 from the actual land use data for the year 1995 and the year 2000,respectively,by combining spatial land allocation simulation using the CLUE-S model,and numerical land demand prediction using the Markov model.The simulations for 2000 and 2005 were confirmed to be generally accurate using Kappa indices.Then the land-use scenarios for Beijing in 2015 were simulated assuming two modes of development:1) urban development following existing trends;and 2) under a strict farmland control.The simulations suggested that under either mode,urbanized areas would expand at the expense of land for other uses.This expansion was predicted to dominate the land-use conversions between 2005 and 2015,and was expected to be accompanied by an extensive loss of farmland.The key susceptible to land-use changes were found to be located at the central urban Beijing and the surrounding regions including Yanqing County,Changping District and Fangshan District.Also,the simulations predicted a considerable expansion of urban/suburban areas in the mountainous regions of Beijing,suggesting a need for priority monitoring and protection.
基金funding of National Natural Science Foundation of China(72173043)Rockefeller Brothers Fund(21-200).
文摘With high carbon emission,the low-carbon transition of power sector will be critical for China to achieve the carbon peaking and carbon neutrality goals.The power transition will have an impact on the economy and employment through the value chain.Quantifying the impact is important for China's future energy and welfare policies.This study adopts input‒output model to analyze the impact on economy and employment based on accelerated and slow power transition scenarios.The results show that the low-carbon power transition will have a negative impact on coal power and coal mining and washing sectors,while a positive impact on machine manufacturing and equipment sector.Low-carbon power transition will have a positive economic and employment effect to promote inclusive growth.By 2060,economic output will increase by about 8.50 trillion CNY,value-added by about 3.39 trillion CNY,and employment will increase by about 3.74 million.Although slower coal power transition can stabilize the economic and employment effect in the short and medium run,accelerating the power transition will produce more positive effect and lower job losses by coal power in the long run.By 2060,accelerating transition will boost output by 8.21%,value-added by 8.20%and jobs by 7.97%.Accordingly,the government should establish an all-round just low-carbon transition mechanism.
基金National Key R&D Program of China,No.2018YFC0507202,No.2017YFA0603702National Natural Science Foundation of China,No.41971358,No.41930647+1 种基金Strategic Priority Research Program(A)of the Chinese Academy of Sciences,No.XDA20030203Innovation Research Project of State Key Laboratory of Resources and Environment Information System,CAS。
文摘Explicitly identifying the spatial distribution of ecological transition zones(ETZs)and simulating their response to climate scenarios is of significance in understanding the response and feedback of ecosystems to global climate change.In this study,a quantitative spatial identification method was developed to assess ETZ distribution in terms of the improved Holdridge life zone(iHLZ)model.Based on climate observations collected from 782 weather stations in China in the T0(1981–2010)period,and the Intergovernmental Panel on Climate Change Coupled Model Intercomparison Project(IPCC CMIP5)RCP2.6,RCP4.5,and RCP8.5 climate scenario data in the T1(2011–2040),T2(2041–2070),and T3(2071–2100)periods,the spatial distribution of ETZs and their response to climate scenarios in China were simulated in the four periods of T0,T1,T2,and T3.Additionally,a spatial shift of mean center model was developed to quantitatively calculate the shift direction and distance of each ETZ type during the periods from T0 to T3.The simulated results revealed 41 ETZ types in China,accounting for 18%of the whole land area.Cold temperate grassland/humid forest and warm temperate arid forest(564,238.5 km~2),cold temperate humid forest and warm temperate arid/humid forest(566,549.75 km~2),and north humid/humid forest and cold temperate humid forest(525,750.25 km~2)were the main ETZ types,accounting for 35%of the total ETZ area in China.Between 2010 and 2100,the area of cold temperate desert shrub and warm temperate desert shrub/thorn steppe ETZs were projected to increase at a rate of 4%per decade,which represented an increase of 3604.2,10063.1,and 17,242 km~2 per decade under the RCP2.6,RCP4.5,and RCP8.5 scenarios,respectively.The cold ETZ was projected to transform to the warm humid ETZ in the future.The average shift distance of the mean center in the north wet forest and cold temperate desert shrub/thorn grassland ETZs was generally larger than that of other ETZs,with the mean center moving to the northeast and the shift distance being more than 150 km during the periods from T0 to T3.In addition,with a gradual increase of temperature and precipitation,the ETZs in northern China displayed a shifting northward trend,while the area of ETZs in southern China decreased gradually,and their mean center moved to high-altitude areas.The effects of climate change on ETZs presented an increasing trend in China,especially in the Qinghai-Tibet Plateau.
基金Under the auspices of National Key R&D Program of China(No.2018YFC0704705)。
文摘Under the demand of urban expansion and the constraints of China’s’National Main Functional Area Planning’policy,urban agglomerations are facing with a huge contradiction between land utilization and ecological protection,especially for HarbinChangchun urban agglomeration who owns a large number of land used for the protection of agricultural production and ecological function.To alleviate this contradiction and provide insight into future land use patterns under different ecological constraints’scenarios,we introduced the patch-based land use simulation(PLUS)model and simulated urban expansion of the Harbin-Changchun urban agglomeration.After verifying the accuracy of the simulation result in 2018,we predicted future urban expansion under the constraints of three different ecological scenarios in 2026.The morphological spatial pattern analysis(MSPA)method and minimum cumulative resistance(MCR)model were also introduced to identify different levels of ecological security pattern(ESP)as ecological constraints.The predicted result of the optimal protection(OP)scenario showed less proportion of water and forest than those of natural expansion(NE)and basic protection(BP)scenarios in 2026.The conclusions are that the PLUS model can improve the simulation accuracy at urban agglomeration scale compared with other cellular automata(CA)models,and the future urban expansion under OP scenario has the least threat to the ecosystem,while the expansion under the natural expansion(NE)scenario poses the greatest threat to the ecosystem.Combined with the MSPA and MCR methods,PLUS model can also be used in other spatial simulations of urban agglomerations under ecological constraints.
基金Under the auspices of the National Natural Science Foundation of China(No.41961027)Key Talents Project of Gansu Province(No.2021RCXM073)Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University。
文摘Rapid urbanization leads to dramatic changes in land use patterns,and the land use/cover change(LUCC)can reflect the spatial impact of urbanization on the ecological environment.Simulating the process of LUCC and predicting the ecological risk future changes can provide supports for urban ecological management.Taking the Yangtze River Delta Urban Agglomeration(YRDUA),China as the study area,four developmental scenarios were set on the basis of the land use data from 2005 to 2015.The temporal land use changes were predicted by the integration of the system dynamic and the future land use simulation(SD-FLUS)model,and the geographically weighted regression(GWR)model was used to identify the spatial heterogeneity and evolution characteristics between ecological risk index(ERI)and socio-economic driving forces.Results showed that:1)From 2005 to 2015,the expansion of construction land(7670.24 km^(2))mainly came from the occupation of cultivated land(7854.22 km2).The Kappa coefficient of the SD-FLUS model was 0.886,indicating that this model could be used to predict the future land use changes in the YRDUA.2)Gross domestic production(GDP)and population density(POP)showed a positive effect on the ERI,and the impact of POP exceeded that of GDP.The ERI showed the characteristics of zonal diffusion and a slight upward trend,and the high ecological risk region increased by 6.09%,with the largest increase.3)Under different developmental scenarios,the land use and ecological risk patterns varied.The construction land is increased by 5.76%,7.41%,5.25%and 6.06%,respectively.And the high ecological risk region accounted for 12.71%,15.06%,11.89%,and 12.94%,correspondingly.In Scenario D,the structure of land use and ecological risk pattern was better compared with other scenarios considering the needs of rapid economic and ecological protection.This study is helpful to understand the spatio-temporal pattern and demand of land use types,grasp the ecological security pattern of large-scale areas,and provide scientific basis for the territory development of urban agglomeration in the future.
文摘The socio-ecological environmental problem caused by the development of coalbed methane(CBM)is becoming more serious,so it is very significant for accelerating the development of CBM industrialization to identify the main influential factors of socioecological environmental risks and take effective risk prevention measures.Based on the triangular fuzzy number method,this paper firstly establishes a comprehensive correlation matrix.Then,the affected factors of socio-ecological environmental risks are analyzed by the DEMATEL method during the development of CBM.Then according to the aspects of centrality and causality,the key indicators are determined.Furthermore,the scenario simulation based on the FCM,the steady-state value and the comprehensive importance of key indicators,and the core indicators are selected.Finally,the scenario simulation of risk management countermeasure is done.The results show that:①The index weights are calculated by the triangular fuzzy numbers,and the correlation matrix in DEMATEL is obtained by the weight ratio,which reduces the shortcomings and the subjectivity of traditional DEMATEL method.②The correlation matrix in FCM is established based on the comprehensive correlation matrix in the above improved DEMATEL,which not only makes the FCM model more comprehensive and reduces the difficulty that the FCM correlation matrix is obtained considering the indirect influence relationship between indicators,but also makes up for the disadvantages that DEMATEL excludes during the selection of the core indexes,which are the considerations of the dynamic change of the importance of the indicators.③The rate of forestry and grass coverage,the ratio of investment in prevention and construction,the pollution index of soil Merlot,the reliability of machinery and equipment,the standard evaluation index of major pollution factors of underground water,and the ability of personal risk prevention are the key indicators,in which the rate of forestry and grass coverage,the ratio of investment in prevention and construction,and the reliability of machinery and equipment are the core indicators and are extremely important for the management of socio-ecological environmental risks during the development of coalbed methane.④The results of the scenario simulation of risk management countermeasure show that the core variables affect the socio-ecological environmental risks through such indicators as the degree of production mechanization,the degree of demolition and resettlement,and the ratio of economic loss by the influenced mechanism analysis;the ratio of investment in prevention and construction has the greatest impact on the socio-ecological environment risks in the early stage of CMB development,while the rate of forestry and grass coverage is the most important in the middle and late stages by the influenced result analysis.Therefore,this paper puts forward some corresponding stage suggestions on the prevention and control of socio-ecological environmental risks during the CMB development.In the early stage of CMB development,the ratio of investment in prevention and construction should be increased.In the middle stage,it is very important to reduce the damage of vegetation regions and to improve the reliability of machinery and equipment;in the late stage,the investment in prevention and construction should be increased steadily and the recovery of damaged vegetation areas should be focused on.
基金Young TeacherFoundation ofBeijing N orm alU niversity,N o.10770001
文摘Modelling scenarios of land use change and their impacts in typical regions are helpful to investigate the mechanism between land use and ecological systems and process the land use allocation under the ecological security. A system dynamics (SD) model with the aim to modelling scenarios of land use change and assessing ecological impact in northern China in the next 50 years is developed here. The accuracy assessment with the historic data from 1990 to 2001 indicated the SD model is robust. After the different 'what-if' scenarios controlled by GDP, population, market, and technology advancement were built, the different scenarios of land use change in northern China from 2000 to 2050 were simulated with their ecological impact assessed. The result suggested that such factors as GDP, population, market and technology have a strong relationship with land use structural change in northern China. It also indicated that such measures as strict controlling of population increase, importing some food to keep the supply-demand balance in the region, and improving agricultural technology will be the guarantee of regional sustainable development with fast economic growth and the obvious land use structural improvement at the same time.
文摘The simulation composability is one of important development directions in simulation domain. The key issue is the semantic composability. Currently there is no feasible approach to realize the effective semantic representation and composition of simulation components. Based on domain knowledge and Web Ontology Language (OWL), this paper proposes a composable simulation framework, which includes conceptual model semantics, model components semantics, model framework semantics, and simulation scenario semantics. Additionally, all the semantics are utilized in the model components development process, the simulation system development process, and the simulation system execution process respectively. The consistency checking among those semantics is also proposed. The detailed mapping processes between different semantic models can help to build the domain ontology driven composable simulation system.
基金Chongqing University Innovation Team for 2016,No.CXTDX201601017Chongqing Research Program of Basic Research and Frontier Technology,No.cstc2017jcyjB0317
文摘Model simulation and scenario change analysis are the core contents of the future land-use change(LUC) study. In this paper, land use status data of the Three Gorges Reservoir Region(TGRR) in 1990 was used as base data. The relationship between driving factors and land-use change was analyzed by using binary logistic stepwise regression analysis, based on which land use in 2010 was simulated by CLUE-S model. After the inspection and determination of main parameters impacting on driving factors of land use in the TGRR, land use of this region in 2030 was simulated based on four scenarios, including natural growth, food security, migration-related construction and ecological conservation. The results were shown as follows:(1) The areas under ROC curves of land-use types(LUTs) were both greater than 0.8 under the analysis and inspection of binary logistic model. These LUTs include paddy field, dryland, woodland, grassland, construction land and water area. Therefore, it has a strong interpretation ability of driving factors on land use, which can be used in the estimation of land use probability distribution.(2) The Kappa coefficients, verified from the result of land-use simulation in 2010, were shown of paddy field 0.9, dryland 0.95, woodland 0.97, grassland 0.84, construction land 0.85 and water area 0.77. So the results of simulation could meet the needs of future simulation and prediction.(3) The results of multi-scenario simulation showed a spatial competitive relationship between different LUTs, and an influence on food security, migration-related construction and ecological conservation in the TGRR, including some land use actions such as the large-scale conversion from paddy field to dryland, the occupation on cultivated land, woodland and grassland for rapid expansion of construction land, the reclamation of woodland and grassland into cultivated land, returning steep sloping farmland back into woodland and grassland. Therefore, it is necessary to balance the needs of various aspects in land use optimization, to achieve the coordination between socio-economy and ecological environment.
基金The Key Research and Development Program of Shaanxi Province,No.2020NY-166Project of Special Investigation on Basic Resources of Science and Technology,No.2019FY202501。
文摘Land use/cover change(LUCC)is a major factor affecting net primary production(NPP).According to the LUCC of the Loess Plateau from 2005 to 2015,the LUCC patterns in 2025 in three scenarios were predicted by using the Future Land Use Simulation(FLUS)model.Furthermore,taking the average NPP of various land use/cover types in 16 years as the reference scale,the changes in NPP in multi-scenario simulations are predicted and analyzed,and the impact of different land use/cover transfers on NPP is quantified.The results are as follows:(1)The land use/cover changes greatly in the baseline and fast development scenarios,and changes relatively little in the ecological protection scenarios.(2)The changes in NPP in different scenarios reflected the significant difference in the ecological protection effect.All the three scenarios promote an NPP increase,but the ecological protection scenario can promote NPP increases the most.(3)The changes in NPP caused by LUCC in the three scenarios reflected the significant difference in the various land use/cover types protection effect.Analyzing and predicting NPP changes in multi-scenario LUCC simulations in the future can provide a theoretical basis for decision makers to judge the future changes in ecological environments and ecological protection effects against different policy backgrounds.
基金funded by the National Natural Science Foundation of China (Grants No.51278239)
文摘To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.
文摘The conceptual model is the first time abstraction ceptual model description method based on the UML and the of the real world. The traditional con- text usually has the semantic ambiguity problem. The formal description method lacks the mechanism of integrity and consistency check. Therefore both of them cannot support the simulation scenario description and the model compos- ability. A simulation conceptual description method based on ontology is put forward. According to the OWL language which was put forward by the W3C organization, a conceptual model description language is established. The OWL language semantic element in the description function in the mili- tary conceptual model is introduced. Then two layers of the military conceptual model framework are built up based on the general ontology and the domain ontology. In the general ontology, the class and property definition are given. While in the domain ontology, they are extended and a relat- ed example is given. The technique advantages of our method include the mechanism of conceptual model consistency and integrity check, the support of composable simulation models, and automatic creation of simulation scenario.
基金supported by the Guangdong Provincial Key Laboratory of Geophysical High-Resolution Imaging Technology (2022B1212010002)Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0203)the Shenzhen Science and Technology Program (KQTD20170810111725321)
文摘This study achieved the construction of earthquake disaster scenarios based on physics-based methods-from fault dynamic rupture to seismic wave propagation-and then population and economic loss estimations.The physics-based dynamic rupture and strong ground motion simulations can fully consider the three-dimensional complexity of physical parameters such as fault geometry,stress field,rock properties,and terrain.Quantitative analysis of multiple seismic disaster scenarios along the Qujiang Fault in western Yunnan Province in southwestern China based on different nucleation locations was achieved.The results indicate that the northwestern segment of the Qujiang Fault is expected to experience significantly higher levels of damage compared to the southeastern segment.Additionally,there are significant variations in human losses,even though the economic losses are similar across different scenarios.Dali Bai Autonomous Prefecture,Chuxiong Yi Autonomous Prefecture,Yuxi City,Honghe Hani and Yi Autonomous Prefecture,and Wenshan Zhuang and Miao Autonomous Prefecture were identified as at medium to high seismic risks,with Yuxi and Honghe being particularly vulnerable.Implementing targeted earthquake prevention measures in Yuxi and Honghe will significantly mitigate the potential risks posed by the Qujiang Fault.Notably,although the fault is within Yuxi,Honghe is likely to suffer the most severe damage.These findings emphasize the importance of considering rupture directivity and its influence on ground motion distribution when assessing seismic risk.
基金National Natural Science Foundation of China,No.41671090National Basic Research Program(973 Program),No.2015CB452702。
文摘Regional land use change is the main cause of the ecosystem carbon storage changes by affecting emission and sink process.However,there has been little research on the influence of land use changes for ecosystem carbon storage at both temporal and spatial scales.For this study,the Qihe catchment in the southern part of the Taihang Mountains was taken as an example;its land use change from 2005 to 2015 was analyzed,the Markov-CLUE-S composite model was used to predict land use patterns in 2025 under natural growth,cultivated land protection and ecological conservation scenario,and the land use data were used to evaluate ecosystem carbon storage under different scenarios for the recent 10-year interval and the future based on the carbon storage module of the In VEST model.The results show the following:(1) the ecosystem carbon storage and average carbon density of Qihe catchment were 3.16×107 t and 141.9 t/ha,respectively,and decreased by 0.07×107 t and 2.89 t/ha in the decade evaluated.(2) During 2005–2015,carbon density mainly decreased in low altitude areas.For high altitude area,regions with increased carbon density comprised a similar percentage to regions with decreased carbon density.The significant increase of the construction areas in the middle and lower reaches of Qihe and the degradation of upper reach woodland were core reasons for carbon density decrease.(3) For 2015–2025,under natural growth scenario,carbon storage and carbon density also significantly decrease,mainly due to the decrease of carbon sequestration capacity in low altitude areas;under cultivated land protection scenario,the decrease of carbon storage and carbon density will slow down,mainly due to the increase of carbon sequestration capacity in low altitude areas;under ecological conservation scenario,carbon storage and carbon density significantly increase and reach 3.19×107 t and 143.26 t/ha,respectively,mainly in regions above 1100 m in altitude.Ecological conservation scenario can enhance carbon sequestration capacity but cannot effectively control the reduction of cultivated land areas.Thus,land use planning of research areas should consider both ecological conservation and cultivated land protection scenarios to increase carbon sink and ensure the cultivated land quality and food safety.
基金supported by the Key Project of the National Natural Science Foundation of China “the SD model and threshold value prediction of the interactive coupled effects between urbanization and eco-environment in mega-urban agglomerations” (Grant No. 41590844)the Independent Research Program of Tsinghua University (Grant No. 2015THZ01)
文摘Is Chinese urbanization going to take a long time, or can its development goal be achieved by the government in a short time? What is the highest stable urbanization level that China can reach? When can China complete its urbanization? To answer these questions, this paper presents a system dynamic(SD) model of Chinese urbanization, and its validity and simulation are justified by a stock-flow test and a sensitivity analysis using real data from 1998 to 2013. Setting the initial conditions of the simulation by referring to the real data of 2013, the multi-scenario analysis from 2013 to 2050 reveals that Chinese urbanization will reach a level higher than 70% in 2035 and then proceed to a slow urbanization stage regardless of the population policy and GDP growth rate settings; in 2050, Chinese urbanization levels will reach approximately 75%, which is a stable and equilibrium level for China. Thus, it can be argued that Chinese urbanization is a long social development process that will require approximately20 years to complete and that the ultimate urbanization level will be 75–80%, which means that in the distant future, 20–25% of China's population will still settle in rural regions of China.
基金supported by the National Basic Research Program of China(Grant Nos.2010CB950901&2014CB954300)the National Natural Science Foundation of China(Grant No.41222003)the State Key Laboratory of Earth Surface Processes and Resource Ecology(Grant No.2013-RC-03)
文摘Climate-induced drought has exerted obvious impacts on land systems in northern China.Although recent reports by the Intergovernmental Panel on Climate Change(IPCC) have suggested a high possibility of climate-induced drought in northern China,the potential impacts of such drying trends on land systems are still unclear.Land use models are powerful tools for assessing the impacts of future climate change.In this study,we first developed a land use scenario dynamic model(iLUSD) by integrating system dynamics and cellular automata.Then,we designed three drying trend scenarios(reversed drying trend,gradual drying trend,and acceleration of drying trend) for the next 25 years based on the IPCC emission scenarios and considering regional climatic predictions in northern China.Finally,the impacts of drying trend scenarios on the land system were simulated and compared.An accuracy assessment with historic data covering 2000 to 2005 indicated that the developed model is competent and reliable for understanding complex changes in the land use system.The results showed that water resources varied from 441.64 to 330.71 billion m3 among different drying trend scenarios,suggesting that future drying trends will have a significant influence on water resource and socioeconomic development.Under the pressures of climate change,water scarcity,and socioeconomic development,the ecotone(i.e.,transition zone between cropping area and nomadic area) in northern China will become increasingly vulnerable and hotspots for land-use change.Urban land and grassland would have the most prominent response to the drying trends.Urban land will expand around major metropolitan areas and the conflict between urban and cultivated land will become more severe.The results also show that previous ecological control measures adopted by the government in these areas will play an important role in rehabilitating the environment.In order to achieve a sustainable development in northern China,issues need to be addressed such as how to arrange land use structure and patterns rationally,and how to adapt to the pressures of climate change and socioeconomic development together.