To get a better understanding of the spatial impact of organic discharges on stream water quality,a "scenario-testing" approach was proposed to examine how a change in plant treatment efficiency would affect...To get a better understanding of the spatial impact of organic discharges on stream water quality,a "scenario-testing" approach was proposed to examine how a change in plant treatment efficiency would affect dissolved oxygen(DO) concentration along a stream.An "upper-lower" boundary technique was applied to conduct sensitivity analysis to observe the responses of DO concentration to different DO-related parameters.The results show a non-linear discrepancy of biochemical oxygen demand(BOD) and DO concentration among different treatment scenarios,which indicates the higher the efficiency of the plant treatment,the shorter the time the stream needs to recover.The sensitivity analysis reveals that the larger the amount of the waste discharge,the more sensitive the BOD to the biological removal parameter.In addition,the DO is more sensitive to the biological removal parameter than to the reaeration parameter.展开更多
To realize the widespread application and continuous functional development of intelligent vehicles,test and evaluation of vehicle's functionality and Safety Performance in complex off-road scenarios are fundament...To realize the widespread application and continuous functional development of intelligent vehicles,test and evaluation of vehicle's functionality and Safety Performance in complex off-road scenarios are fundamental.Since traditional distance-based road tests cannot meet the evolving test requirements,a method to design the function-based off-road testing scenario library for intelligent vehicles(IV)is proposed in this paper.The testing scenario library is defined as a critical set of scenarios that can be used for IV tests.First,for the complex and diverse off-road scenarios,a hierarchical,structural model of the test scenario is built.Then,the critical test scenarios are selected adaptively according to the vehicle model to be tested.Next,those parameters representing the challenging test scenarios are selected.The selected parameters need to fit the natural distribution probability of scenarios.The critical test-scenario library is built combing these parameters with the structural model.Finally,the test scenarios that are most approximate to the natural driving scenario are determined with importance sampling theory.The test-scenario library built with this method can provide more critical test scenarios,and is widely applicable despite different vehicle models.Verified by simulation in the off-road interaction scenarios,test would be accelerated significantly with this method,about 800 times faster than testing in the natural road environment.展开更多
基金Projects PGSD3-334033-2006 supported by the Natural Sciences and Engineering Research Council of Canada2007-2008 by the Canadian Forest Service of Natural Resources
文摘To get a better understanding of the spatial impact of organic discharges on stream water quality,a "scenario-testing" approach was proposed to examine how a change in plant treatment efficiency would affect dissolved oxygen(DO) concentration along a stream.An "upper-lower" boundary technique was applied to conduct sensitivity analysis to observe the responses of DO concentration to different DO-related parameters.The results show a non-linear discrepancy of biochemical oxygen demand(BOD) and DO concentration among different treatment scenarios,which indicates the higher the efficiency of the plant treatment,the shorter the time the stream needs to recover.The sensitivity analysis reveals that the larger the amount of the waste discharge,the more sensitive the BOD to the biological removal parameter.In addition,the DO is more sensitive to the biological removal parameter than to the reaeration parameter.
基金National Natural Science Foundation of China No.U19A2083.
文摘To realize the widespread application and continuous functional development of intelligent vehicles,test and evaluation of vehicle's functionality and Safety Performance in complex off-road scenarios are fundamental.Since traditional distance-based road tests cannot meet the evolving test requirements,a method to design the function-based off-road testing scenario library for intelligent vehicles(IV)is proposed in this paper.The testing scenario library is defined as a critical set of scenarios that can be used for IV tests.First,for the complex and diverse off-road scenarios,a hierarchical,structural model of the test scenario is built.Then,the critical test scenarios are selected adaptively according to the vehicle model to be tested.Next,those parameters representing the challenging test scenarios are selected.The selected parameters need to fit the natural distribution probability of scenarios.The critical test-scenario library is built combing these parameters with the structural model.Finally,the test scenarios that are most approximate to the natural driving scenario are determined with importance sampling theory.The test-scenario library built with this method can provide more critical test scenarios,and is widely applicable despite different vehicle models.Verified by simulation in the off-road interaction scenarios,test would be accelerated significantly with this method,about 800 times faster than testing in the natural road environment.