In this paper,the latest progress,major achievements and future plans of Chinese meteorological satellites and the core data processing techniques are discussed.First,the latest three FengYun(FY)meteorological satelli...In this paper,the latest progress,major achievements and future plans of Chinese meteorological satellites and the core data processing techniques are discussed.First,the latest three FengYun(FY)meteorological satellites(FY-2H,FY-3D,and FY-4A)and their primary objectives are introduced Second,the core image navigation techniques and accuracies of the FY meteorological satellites are elaborated,including the latest geostationary(FY-2/4)and polar-orbit(FY-3)satellites.Third,the radiometric calibration techniques and accuracies of reflective solar bands,thermal infrared bands,and passive microwave bands for FY meteorological satellites are discussed.It also illustrates the latest progress of real-time calibration with the onboard calibration system and validation with different methods,including the vicarious China radiance calibration site calibration,pseudo invariant calibration site calibration,deep convective clouds calibration,and lunar calibration.Fourth,recent progress of meteorological satellite data assimilation applications and quantitative science produce are summarized at length.The main progress is in meteorological satellite data assimilation by using microwave and hyper-spectral infrared sensors in global and regional numerical weather prediction models.Lastly,the latest progress in radiative transfer,absorption and scattering calculations for satellite remote sensing is summarized,and some important research using a new radiative transfer model are illustrated.展开更多
An agile earth-observing satellite equipped with multimode cameras capable of transmitting observation data to other satellites is developed to rapidly respond to requests with multiple observation modes.This gives ri...An agile earth-observing satellite equipped with multimode cameras capable of transmitting observation data to other satellites is developed to rapidly respond to requests with multiple observation modes.This gives rise to the Multisatellite Multimode Crosslink Scheduling(MMCS)problem,which involves allocating observation requests to agile satellites,selecting appropriate timing and observation modes for the requests,and transmitting the data to the ground station via the satellite communication system.Herein,a mixed integer programming model is introduced to include all complex time and operation constraints.To solve the MMCS problem,a two-stage heuristic method,called Fast insertion Tabu Search with Conflict-avoidance(FTS-C)heuristic,is developed.In the first stage,a conflict-avoidance insertion algorithm is designed to generate a high-quality initial solution by considering the requests transmission and download.Further,the tabu search-based second stage optimizes the initial solution.Finally,an extensive empirical study based on a real-world situation demonstrates that FTS-C can generate a solution with higher quality in less time than other state-of-the-art algorithms and the CPLEX solver.展开更多
基金funded by the National Key R&D Program of China(Grant Nos.2018YFB0504900 and 2015AA123700)
文摘In this paper,the latest progress,major achievements and future plans of Chinese meteorological satellites and the core data processing techniques are discussed.First,the latest three FengYun(FY)meteorological satellites(FY-2H,FY-3D,and FY-4A)and their primary objectives are introduced Second,the core image navigation techniques and accuracies of the FY meteorological satellites are elaborated,including the latest geostationary(FY-2/4)and polar-orbit(FY-3)satellites.Third,the radiometric calibration techniques and accuracies of reflective solar bands,thermal infrared bands,and passive microwave bands for FY meteorological satellites are discussed.It also illustrates the latest progress of real-time calibration with the onboard calibration system and validation with different methods,including the vicarious China radiance calibration site calibration,pseudo invariant calibration site calibration,deep convective clouds calibration,and lunar calibration.Fourth,recent progress of meteorological satellite data assimilation applications and quantitative science produce are summarized at length.The main progress is in meteorological satellite data assimilation by using microwave and hyper-spectral infrared sensors in global and regional numerical weather prediction models.Lastly,the latest progress in radiative transfer,absorption and scattering calculations for satellite remote sensing is summarized,and some important research using a new radiative transfer model are illustrated.
基金supported by the National Natural Science Foundation of China(No.72001212)the Hunan Provincial Innovation Foundation for Postgraduate(No.CX20200022).
文摘An agile earth-observing satellite equipped with multimode cameras capable of transmitting observation data to other satellites is developed to rapidly respond to requests with multiple observation modes.This gives rise to the Multisatellite Multimode Crosslink Scheduling(MMCS)problem,which involves allocating observation requests to agile satellites,selecting appropriate timing and observation modes for the requests,and transmitting the data to the ground station via the satellite communication system.Herein,a mixed integer programming model is introduced to include all complex time and operation constraints.To solve the MMCS problem,a two-stage heuristic method,called Fast insertion Tabu Search with Conflict-avoidance(FTS-C)heuristic,is developed.In the first stage,a conflict-avoidance insertion algorithm is designed to generate a high-quality initial solution by considering the requests transmission and download.Further,the tabu search-based second stage optimizes the initial solution.Finally,an extensive empirical study based on a real-world situation demonstrates that FTS-C can generate a solution with higher quality in less time than other state-of-the-art algorithms and the CPLEX solver.