1. INTRODUCTION The proposed Three Gorges Project, one of the biggest hydroelectric projects in the world, will dam the middle reaches of the Changjiang (Yangtze) River, the third longest river in the world, and form ...1. INTRODUCTION The proposed Three Gorges Project, one of the biggest hydroelectric projects in the world, will dam the middle reaches of the Changjiang (Yangtze) River, the third longest river in the world, and form a large reservoir. Its impacts on environment have attracted wide attention. Entrusted by National Scientific-Technical Commission, the Chinese Academy of Sciences (CAS) was in charge of a research project on this issuse from 1984 to 1989. Tho use of remote sensing played an important role in the project considering the study area is mountainous and not convenientlv located, which makes it difficult to conduct the research onlv using conventional means.展开更多
The effects of vertical wind shear on tropical cyclone(TC) intensity change are examined based on the TC data from the China Meteorological Administration and the NCEP reanalysis daily data from 2001 to 2006.First,the...The effects of vertical wind shear on tropical cyclone(TC) intensity change are examined based on the TC data from the China Meteorological Administration and the NCEP reanalysis daily data from 2001 to 2006.First,the influence of wind shear between different vertical levels and averages in different horizontal areas are compared.The results indicate that the effect of wind shear between 200 and 850 hPa averaged within a 200-800 km annulus on TC intensity change is larger than any other calculated vertical wind shear.High-latitude and intense TCs tend to be less sensitive to the effects of VWS than low-latitude and weak TCs.TCs experience time lags between the imposition of the shear and the weakening in TC intensity.A vertical shear of 8-9 m/s(9-10 m/s) would weaken TC intensity within 60 h(48 h).A vertical shear greater than 10 m/s would weaken TC intensity within 6 h.Finally,a statistical TC intensity prediction scheme is developed by using partial least squares regression,which produces skillful intensity forecasts when potential predictors include factors related to the vertical wind shear.Analysis of the standardized regression coefficients further confirms the obtained statistical results.展开更多
文摘1. INTRODUCTION The proposed Three Gorges Project, one of the biggest hydroelectric projects in the world, will dam the middle reaches of the Changjiang (Yangtze) River, the third longest river in the world, and form a large reservoir. Its impacts on environment have attracted wide attention. Entrusted by National Scientific-Technical Commission, the Chinese Academy of Sciences (CAS) was in charge of a research project on this issuse from 1984 to 1989. Tho use of remote sensing played an important role in the project considering the study area is mountainous and not convenientlv located, which makes it difficult to conduct the research onlv using conventional means.
基金National Natural Science Foundation of China(41405060,41475082,41305049,41275067,41475059)
文摘The effects of vertical wind shear on tropical cyclone(TC) intensity change are examined based on the TC data from the China Meteorological Administration and the NCEP reanalysis daily data from 2001 to 2006.First,the influence of wind shear between different vertical levels and averages in different horizontal areas are compared.The results indicate that the effect of wind shear between 200 and 850 hPa averaged within a 200-800 km annulus on TC intensity change is larger than any other calculated vertical wind shear.High-latitude and intense TCs tend to be less sensitive to the effects of VWS than low-latitude and weak TCs.TCs experience time lags between the imposition of the shear and the weakening in TC intensity.A vertical shear of 8-9 m/s(9-10 m/s) would weaken TC intensity within 60 h(48 h).A vertical shear greater than 10 m/s would weaken TC intensity within 6 h.Finally,a statistical TC intensity prediction scheme is developed by using partial least squares regression,which produces skillful intensity forecasts when potential predictors include factors related to the vertical wind shear.Analysis of the standardized regression coefficients further confirms the obtained statistical results.