期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Direct modeling for computational fluid dynamics 被引量:3
1
作者 Kun Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第3期303-318,共16页
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equ... All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numer- ical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require fur- ther expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional dis- tinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of con- structing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm develop- ment. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be mod- eled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct construction of dis- crete numerical evolution equations, where the mesh size and time step will play dynamic roles in the modeling process. With the variation of the ratio between mesh size and local particle mean free path, the scheme will capture flow physics from the kinetic particle transport and collision to the hydro- dynamic wave propagation. Based on the direct modeling, a continuous dynamics of flow motion will be captured in the unified gas-kinetic scheme. This scheme can be faithfully used to study the unexplored non-equilibrium flow physics in the transition regime. 展开更多
关键词 Direct modeling Unified gas kinetic schemeboltzmann equation - Kinetic collision model Non-equilibrium flows Navier-Stokes equations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部