The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the...The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the high cost and long duration of operational tests,it is essential to plan the test in advance.To solve the problem of planning UAV swarm operational test,this study considers the multi-stage feature of a UAV swarm mission,composed of launch,flight and combat stages,and proposes a method to find test plans that can maximize mission reliability.Therefore,a multi-stage mission reliability model for a UAV swarm is proposed to ensure successful implementation of the mission.A multi-objective integer optimization method that considers both mission reliability and cost is then formulated to obtain the optimal test plans.This study first constructs a mission reliability model for the UAV swarm in the combat stage.Then,the launch stage and flight stage are integrated to develop a complete PMS(Phased Mission Systems)reliability model.Finally,the Binary Decision Diagrams(BDD)and Multi Objective Quantum Particle Swarm Optimization(MOQPSO)methods are proposed to solve the model.The optimal plans considering both reliability and cost are obtained.The proposed model supports the planning of UAV swarm operational tests and represents a meaningful exploration of UAV swarm test planning.展开更多
Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explo...Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explorer(DAMPE),Quantum Experiments at Space Scale(QUESS),Advanced Space-based Solar Observatory(ASO-S),Einstein Probe(EP),and significant scientific outcomes have been achieved.In order to plan the future space science missions in China,CAS has organized the Chinese space science community to conduct medium and long-term development strategy studies,and summarized the major scientific frontiers of space science as“One Black,Two Dark,Three Origins and Five Characterizations”.Five main scientific themes have been identified for China’s future breakthroughs,including the Extreme Universe,Space-Time Ripples,the Panoramic View of the Sun and Earth,the Habitable Planets,and Biological&Physical Science in Space.Space science satellite missions to be implemented before 2030 are proposed accordingly.展开更多
The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (ph...The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (phosphorus) are found, are called DNA-stars. Based on stellar abundances a new method for searching for habitable exoplanets has been developed and a list of 48 DNA-stars in the solar neighborhood, on which life is possible, has been defined. The quota of DNA-stars is equal 1.3% of the total amount of Hypatia Stellar Catalog. Only three DNA-stars out of selected 48 stars belong to the spectral class as our Sun (G2V). The closest to the solar system is the DNA-star with the number HIP 15510, which belongs to the G8V class and is 6 pc away from the solar system. Nine DNA-stars, which have the highest chemical similarity with solar spectrum, were identified. It is identified that one of these nine stars, HIP 24681, has six planets.展开更多
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval...It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.展开更多
Einstein Probe,an astronomical satellite designed for X-ray observation on astronomical events drastically evolving over time,was successfully sent into preset orbit by a Long March 2C rocket from China’s Xichang Sat...Einstein Probe,an astronomical satellite designed for X-ray observation on astronomical events drastically evolving over time,was successfully sent into preset orbit by a Long March 2C rocket from China’s Xichang Satellite Launch Center located in Sichuan Province at 15:03 GMT+8 on January 9,2024.展开更多
The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its abili...The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission.However,issues with heterogeneity,cooperation between systems,and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods.This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration.First,we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints.Then,we propose an effective operationloop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline.Moreover,a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration,revealing the evolution law of the effective operation loop and mission reliability.Finally,a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods.The mission reliability is achieved by considering external shocks,which can serve as a reference for evaluating and improving the effectiveness of UWSoS.展开更多
Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mi...Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mission and route planning for a fleet of UAVs. The mission planning determines the configuration of weapons in UAVs and the weapons to attack targets, while the route planning determines the UAV’s visiting sequence for the targets. The problem is formulated as an integer linear programming model. Due to the inefficiency of CPLEX on large scale optimization problems, an effective learningbased heuristic, namely, population based adaptive large neighborhood search(P-ALNS), is proposed to solve the model. In P-ALNS, seven neighborhood structures are designed and adaptively utilized in terms of their historical performance. The effectiveness and superiority of the proposed model and algorithm are demonstrated on test instances of small, medium and large sizes. In particular, P-ALNS achieves comparable solutions or as good as those of CPLEX on small-size(20 targets)instances in much shorter time.展开更多
Space emergency launching is to send a satellite into space by using a rapid responsive solid rocket in the bounded time to implement the emergency Earth observation mission.The key and difficult points mainly include...Space emergency launching is to send a satellite into space by using a rapid responsive solid rocket in the bounded time to implement the emergency Earth observation mission.The key and difficult points mainly include the business process construction of launching mission planning,validation of the effectiveness of the launching scheme,etc.This paper pro-poses the agile space emergency launching mission planning simulation and verification method,which systematically con-structs the overall technical framework of space emergency launching mission planning with multi-field area,multi-platform and multi-task parallel under the constraint of resource schedul-ing for the first time.It supports flexible reconstruction of mis-sion planning processes such as launching target planning,tra-jectory planning,path planning,action planning and launching time analysis,and can realize on-demand assembly of operation links under different mission scenarios and different plan condi-tions,so as to quickly modify and generate launching schemes.It supports the fast solution of rocket trajectory data and the accurate analysis of multi-point salvo time window recheck and can realize the fast conflict resolution of launching missions in the dimensions of launching position and launching window sequence.It supports lightweight scenario design,modular flexi-ble simulation,based on launching style,launching platform,launching rules,etc.,can realize the independent mapping of mission planning results to two-dimensional and three-dimen-sional visual simulation models,so as to achieve a smooth con-nection between mission planning and simulation.展开更多
The construction of world-class undergraduate education with Chinese characteristics is a major mission for all college English teachers in today’s era,and a considerable proportion of college English teachers are st...The construction of world-class undergraduate education with Chinese characteristics is a major mission for all college English teachers in today’s era,and a considerable proportion of college English teachers are still in varying degrees of difficulties and bottlenecks.How to quickly achieve self-breakthrough and devote themselves to realizing the dream of serving the country and education is a higher requirement for college teachers at the national level.展开更多
To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as ...To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as technical feasibilities, and it relates to complex system simulation methods such as multi-disciplinary coupling, multi-language modeling as well as interactive simulation and virtual simulation technologies. This paper introduces the design of a digital simulation platform for satellite launch mission verification.The platform has the advantages of high generality and extensibility, being easy to build up. The Functional Mockup Interface(FMI) Standard is adopted to achieve integration of multi-source models. A WebGL based 3D visual simulation tool is also adopted to implement the virtual display system which could display the rocket launch process and rocket-satellite separation with high fidelity 3D virtual scenes. A configuration tool was developed to map the 3D objects in the visual scene with simulation physical variables for complex rocket flight control mechanisms, which greatly improves the platform's generality and extensibility. Finally the real-time performance had been tested and the YL-1 launch mission was adopted to demonstrate the functions of the platform.The platform will be used to construct a digital twin system for satellite launch missions in the future.展开更多
基金supported by the National Natural Science Foundation of China(with Granted Number 72271239,grant recipient P.J.)Research on the Design Method of Reliability Qualification Test for Complex Equipment Based on Multi-Source Information Fusion.https://www.nsfc.gov.cn/.
文摘The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the high cost and long duration of operational tests,it is essential to plan the test in advance.To solve the problem of planning UAV swarm operational test,this study considers the multi-stage feature of a UAV swarm mission,composed of launch,flight and combat stages,and proposes a method to find test plans that can maximize mission reliability.Therefore,a multi-stage mission reliability model for a UAV swarm is proposed to ensure successful implementation of the mission.A multi-objective integer optimization method that considers both mission reliability and cost is then formulated to obtain the optimal test plans.This study first constructs a mission reliability model for the UAV swarm in the combat stage.Then,the launch stage and flight stage are integrated to develop a complete PMS(Phased Mission Systems)reliability model.Finally,the Binary Decision Diagrams(BDD)and Multi Objective Quantum Particle Swarm Optimization(MOQPSO)methods are proposed to solve the model.The optimal plans considering both reliability and cost are obtained.The proposed model supports the planning of UAV swarm operational tests and represents a meaningful exploration of UAV swarm test planning.
基金Supported by Consultation and Evaluation Program on Academic Divisions of the Chinese Academy of Sciences(2022-DX02-B-007)。
文摘Since 2011,the Chinese Academy of Sciences(CAS)has implemented the Strategic Priority Program on Space Science(SPP).A series of scientific satellites have been developed and launched,such as Dark Matter Particle Explorer(DAMPE),Quantum Experiments at Space Scale(QUESS),Advanced Space-based Solar Observatory(ASO-S),Einstein Probe(EP),and significant scientific outcomes have been achieved.In order to plan the future space science missions in China,CAS has organized the Chinese space science community to conduct medium and long-term development strategy studies,and summarized the major scientific frontiers of space science as“One Black,Two Dark,Three Origins and Five Characterizations”.Five main scientific themes have been identified for China’s future breakthroughs,including the Extreme Universe,Space-Time Ripples,the Panoramic View of the Sun and Earth,the Habitable Planets,and Biological&Physical Science in Space.Space science satellite missions to be implemented before 2030 are proposed accordingly.
文摘The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (phosphorus) are found, are called DNA-stars. Based on stellar abundances a new method for searching for habitable exoplanets has been developed and a list of 48 DNA-stars in the solar neighborhood, on which life is possible, has been defined. The quota of DNA-stars is equal 1.3% of the total amount of Hypatia Stellar Catalog. Only three DNA-stars out of selected 48 stars belong to the spectral class as our Sun (G2V). The closest to the solar system is the DNA-star with the number HIP 15510, which belongs to the G8V class and is 6 pc away from the solar system. Nine DNA-stars, which have the highest chemical similarity with solar spectrum, were identified. It is identified that one of these nine stars, HIP 24681, has six planets.
基金supported by the National Natural Science Foundation of China (12072365)the Natural Science Foundation of Hunan Province of China (2020JJ4657)。
文摘It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.
文摘Einstein Probe,an astronomical satellite designed for X-ray observation on astronomical events drastically evolving over time,was successfully sent into preset orbit by a Long March 2C rocket from China’s Xichang Satellite Launch Center located in Sichuan Province at 15:03 GMT+8 on January 9,2024.
基金supported by the National Natural Science Foundation of China(72101270,72001213).
文摘The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission.However,issues with heterogeneity,cooperation between systems,and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods.This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration.First,we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints.Then,we propose an effective operationloop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline.Moreover,a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration,revealing the evolution law of the effective operation loop and mission reliability.Finally,a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods.The mission reliability is achieved by considering external shocks,which can serve as a reference for evaluating and improving the effectiveness of UWSoS.
基金supportes by the National Nature Science Foundation o f China (71771215,62122093)。
文摘Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mission and route planning for a fleet of UAVs. The mission planning determines the configuration of weapons in UAVs and the weapons to attack targets, while the route planning determines the UAV’s visiting sequence for the targets. The problem is formulated as an integer linear programming model. Due to the inefficiency of CPLEX on large scale optimization problems, an effective learningbased heuristic, namely, population based adaptive large neighborhood search(P-ALNS), is proposed to solve the model. In P-ALNS, seven neighborhood structures are designed and adaptively utilized in terms of their historical performance. The effectiveness and superiority of the proposed model and algorithm are demonstrated on test instances of small, medium and large sizes. In particular, P-ALNS achieves comparable solutions or as good as those of CPLEX on small-size(20 targets)instances in much shorter time.
文摘Space emergency launching is to send a satellite into space by using a rapid responsive solid rocket in the bounded time to implement the emergency Earth observation mission.The key and difficult points mainly include the business process construction of launching mission planning,validation of the effectiveness of the launching scheme,etc.This paper pro-poses the agile space emergency launching mission planning simulation and verification method,which systematically con-structs the overall technical framework of space emergency launching mission planning with multi-field area,multi-platform and multi-task parallel under the constraint of resource schedul-ing for the first time.It supports flexible reconstruction of mis-sion planning processes such as launching target planning,tra-jectory planning,path planning,action planning and launching time analysis,and can realize on-demand assembly of operation links under different mission scenarios and different plan condi-tions,so as to quickly modify and generate launching schemes.It supports the fast solution of rocket trajectory data and the accurate analysis of multi-point salvo time window recheck and can realize the fast conflict resolution of launching missions in the dimensions of launching position and launching window sequence.It supports lightweight scenario design,modular flexi-ble simulation,based on launching style,launching platform,launching rules,etc.,can realize the independent mapping of mission planning results to two-dimensional and three-dimen-sional visual simulation models,so as to achieve a smooth con-nection between mission planning and simulation.
文摘The construction of world-class undergraduate education with Chinese characteristics is a major mission for all college English teachers in today’s era,and a considerable proportion of college English teachers are still in varying degrees of difficulties and bottlenecks.How to quickly achieve self-breakthrough and devote themselves to realizing the dream of serving the country and education is a higher requirement for college teachers at the national level.
文摘To simulate the satellite launch mission under a general platform which could be used in a full-digital mode as well as in a semi-physical way, is an important way to certify the mission design performance as well as technical feasibilities, and it relates to complex system simulation methods such as multi-disciplinary coupling, multi-language modeling as well as interactive simulation and virtual simulation technologies. This paper introduces the design of a digital simulation platform for satellite launch mission verification.The platform has the advantages of high generality and extensibility, being easy to build up. The Functional Mockup Interface(FMI) Standard is adopted to achieve integration of multi-source models. A WebGL based 3D visual simulation tool is also adopted to implement the virtual display system which could display the rocket launch process and rocket-satellite separation with high fidelity 3D virtual scenes. A configuration tool was developed to map the 3D objects in the visual scene with simulation physical variables for complex rocket flight control mechanisms, which greatly improves the platform's generality and extensibility. Finally the real-time performance had been tested and the YL-1 launch mission was adopted to demonstrate the functions of the platform.The platform will be used to construct a digital twin system for satellite launch missions in the future.