期刊文献+
共找到124篇文章
< 1 2 7 >
每页显示 20 50 100
Tissue engineering and peripheral nerve regeneration (Ⅲ)——Sciatic nerve regeneration with PDLLA nerve guide
1
作者 王身国 侯建伟 +1 位作者 贝建中 赵永强 《Science China Chemistry》 SCIE EI CAS 2001年第4期419-426,共8页
The biodegradation rate and biocompatibility of poly(d, / -lactide) (PDLLA) in vivo were evaluated. The aim of this study was to establish a nerve guide constructed by the PDLLA with 3-D microenvironment and to repair... The biodegradation rate and biocompatibility of poly(d, / -lactide) (PDLLA) in vivo were evaluated. The aim of this study was to establish a nerve guide constructed by the PDLLA with 3-D microenvironment and to repair a 10 mm of sciatic nerve gap in rats. The process of the nerve regeneration was investigated by histological assessment, electrophysiological examination, and determination of wet weight recovery rate of the gastrocnemius muscle. After 3 weeks, the nerve guide had changed from a transparent to an opaque status. The conduit was degraded and absorbed partly and had lost their strength with breakage at the 9th week of postoperation. At the conclusion of 12 weeks, proximal and distal end of nerves were anastomosed by nerve regeneration and the conduit vanished completely. The results suggest that PDLLA conduits may serve for peripheral nerve regeneration and PDLLA is a sort of hopeful candidate for tissue engineering. 展开更多
关键词 poly(d. l-lactide) nerve conduit nerve guiding regeneration biodegradation BIOCOMPATIBILITY tissue engineering.
原文传递
Folic acid contributes to peripheral nerve injury repair by promoting Schwann cell proliferation, migration, and secretion of nerve growth factor 被引量:10
2
作者 Wei-Bo Kang Yong-Jie Chen +1 位作者 Du-Yi Lu Jia-Zhi Yan 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第1期132-139,共8页
After peripheral nerve injury, intraperitoneal injection of folic acid improves axon quantity, increases axon density and improves electromyography results. However, the mechanisms for this remain unclear. This study ... After peripheral nerve injury, intraperitoneal injection of folic acid improves axon quantity, increases axon density and improves electromyography results. However, the mechanisms for this remain unclear. This study explored whether folic acid promotes peripheral nerve injury repair by affecting Schwann cell function. Primary Schwann cells were obtained from rats by in vitro separation and culture. Cell proliferation, assayed using the Cell Counting Kit-8 assay, was higher in cells cultured for 72 hours with 100 mg/L folic acid compared with the control group. Cell proliferation was also higher in the 50, 100, 150, and 200 mg/L folic acid groups compared with the control group after culture for 96 hours. Proliferation was markedly higher in the 100 mg/L folic acid group compared with the 50 mg/L folic acid group and the 40 ng/L nerve growth factor group. In Transwell assays, the number of migrated Schwann cells dramatically increased after culture with 100 and 150 mg/L folic acid compared with the control group. In nerve growth factor enzyme-linked immunosorbent assays, treatment of Schwa nn cell cultures with 50, 100, and 150 mg/L folic acid increased levels of nerve growth factor in the culture medium compared with the control group at 3 days. The nerve growth factor concentration of Schwann cell cultures treated with 100 mg/L folic acid group was remarkably higher than that in the 50 and 150 mg/L folic acid groups at 3 days. Nerve growth factor concentration in the 10, 50, and 100 mg/L folic acid groups was higher than that in the control group at 7 days. The nerve growth factor concentration in the 50 mg/L folic acid group was remarkably higher than that in the 10 and 100 mg/L folic acid groups at 7 days. In vivo, 80 μg/kg folic acid was intraperitoneally administrated for 7 consecutive days after sciatic nerve injury. Immunohistochemical staining showed that the number of Schwann cells in the folic acid group was greater than that in the control group. We suggest that folic acid may play a role in improving the repair of peripheral nerve injury by promoting the proliferation and migration of Schwann cells and the secretion of nerve growth factors. 展开更多
关键词 nerve regeneration folic acid schwann cell cell functions peripheral nerve injury peripheral nerve repair neurotrophic factor tissue engineering neural regeneration biomaterial neural regeneration
下载PDF
Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering 被引量:2
3
作者 Jun-feng Zhou Yi-guo Wang +3 位作者 Liang Cheng Zhao Wu Xiao-dan Sun Jiang Peng 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1644-1652,共9页
Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We ... Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We embedded PPy into poly(lactic acid) (PLA) nanofibers via electrospinning and fabricated a PLA/PPy nanofibrous scaffold containing 15% PPy with sustained conductivity and aligned topog- raphy, qhere was good biocompatibility between the scaffold and human umbilical cord mesenchymal stem cells as well as Schwann cells. Additionally, the direction of cell elongation on the scaffold was parallel to the direction of fibers. Our findings suggest that the aligned PLA/PPy nanofibrous scaffold is a promising biomaterial for peripheral nerve regeneration. 展开更多
关键词 nerve regeneration POLYPYRROLE ELECTROSPINNING CONDUCTIVITY electrical property schwann cells human umbilical cord mesenchymalstem cells nerve tissue engineering nanofibrous scaffolds neural regeneration
下载PDF
Platelet-rich plasma gel in combination with Schwann cells for repair of sciatic nerve injury 被引量:12
4
作者 Fagang Ye Haiyan Li Guangxi Qiao Feng Chen Hao Tao Aiyu Ji Yanling Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第29期2286-2292,共7页
Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits, culture-expanded and differentiated into Schwann cell-like cells. Autologous platelet-dch plasma and Schwann cell-like cells were mixed ... Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits, culture-expanded and differentiated into Schwann cell-like cells. Autologous platelet-dch plasma and Schwann cell-like cells were mixed in suspension at a density of 1 x 106 cells/mL, prior to introduction into a poly (lactic-co-glycolic acid) conduit. Fabricated tissue-engineered nerves were implanted into rabbits to bridge 10 mm sciatic nerve defects (platelet-rich plasma group). Controls were established using fibrin as the seeding matrix for Schwann cell-like cells at identical density to construct tissue-engineered nerves (fibrin group). Twelve weeks after implantation, toluidine blue staining and scanning electron microscopy were used to demonstrate an increase in the number of regenerating nerve fibers and thickness of the myelin sheath in the platelet-rich plasma group compared with the fibrin group. Fluoro-gold retrograde labeling revealed that the number of Fluoro-gold-positive neurons in the dorsal root ganglion and the spinal cord anterior horn was greater in the platelet-rich plasma group than in the fibrin group. Electrophysiological examination confirmed that compound muscle action potential and nerve conduction velocity were superior in the platelet-rich plasma group compared with the fibrin group. These results indicate that autologous platelet-rich plasma gel can effectively serve as a seeding matrix for Schwann cell-like cells to construct tissue-engineered nerves to promote perJpheral nerve regeneration. 展开更多
关键词 platelet-rich plasma extracellular matrix schwann cells FIBRIN sciatic nerve peripheral nerve injury nerve tissue engineering neural regeneration
下载PDF
Tissue engineering for the repair of peripheral nerve injury 被引量:20
5
作者 Pei-Xun Zhang Na Han +5 位作者 Yu-Hui Kou Qing-Tang Zhu Xiao-Lin Liu Da-Ping Quan Jian-Guo Chen Bao-Guo Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第1期51-58,共8页
Peripheral nerve injury is a common clinical problem and affects the quality of life of patients. Traditional restoration methods are not satisfactory. Researchers increasingly focus on the field of tissue engineering... Peripheral nerve injury is a common clinical problem and affects the quality of life of patients. Traditional restoration methods are not satisfactory. Researchers increasingly focus on the field of tissue engineering. The three key points in establishing a tissue engineering material are the biological scaffold material, the seed cells and various growth factors. Understanding the type of nerve injury, the construction of scaffold and the process of repair are necessary to solve peripheral nerve injury and promote its regeneration. This review describes the categories of peripheral nerve injury, fundamental research of peripheral nervous tissue engineering and clinical research on peripheral nerve scaffold material, and paves a way for related research and the use of conduits in clinical practice. 展开更多
关键词 nerve regeneration SCAFFOLD biomaterial stem cells nerve growth factor peripheral nerve injury peripheral nerve repair tissue engineering neural regeneration
下载PDF
Hypoxic pre-conditioned adipose-derived stem/progenitor cells embedded in fibrin conduits promote peripheral nerve regeneration in a sciatic nerve graft model
6
作者 Julius M.Mayer Christian Krug +4 位作者 Maximilian M.Saller Annette Feuchtinger Riccardo E.Giunta Elias Volkmer Thomas Holzbach 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期652-656,共5页
Recent results emphasize the supportive effects of adipose-derived multipotent stem/progenitor cells(ADSPCs)in peripheral nerve recovery.Cultivation under hypoxia is considered to enhance the release of the regenerati... Recent results emphasize the supportive effects of adipose-derived multipotent stem/progenitor cells(ADSPCs)in peripheral nerve recovery.Cultivation under hypoxia is considered to enhance the release of the regenerative potential of ADSPCs.This study aimed to examine whether peripheral nerve regeneration in a rat model of autologous sciatic nerve graft benefits from an additional custom-made fibrin conduit seeded with hypoxic pre-conditioned(2%oxygen for 72 hours)autologous ADSPCs(n=9).This treatment mode was compared with three others:fibrin conduit seeded with ADSPCs cultivated under normoxic conditions(n=9);non-cell-carrying conduit(n=9);and nerve autograft only(n=9).A 16-week follow-up included functional testing(sciatic functional index and static sciatic index)as well as postmortem muscle mass analyses and morphometric nerve evaluations(histology,g-ratio,axon density,and diameter).At 8 weeks,the hypoxic pre-conditioned group achieved significantly higher sciatic functional index/static sciatic index scores than the other three groups,indicating faster functional regeneration.Furthermore,histologic evaluation showed significantly increased axon outgrowth/branching,axon density,remyelination,and a reduced relative connective tissue area.Hypoxic pre-conditioned ADSPCs seeded in fibrin conduits are a promising adjunct to current nerve autografts.Further studies are needed to understand the underlying cellular mechanism and to investigate a potential application in clinical practice. 展开更多
关键词 adipose-derived progenitor cells adipose-derived multipotent stem/progenitor cell autologous nerve graft fibrin conduit hypoxia hypoxic pre-conditioning nerve defect nerve tissue engineering peripheral nerve regeneration regenerative medicine
下载PDF
Potential of dental pulp stem cells and their products in promoting peripheral nerve regeneration and their future applications
7
作者 Wen-Bo Xing Shu-Ting Wu +5 位作者 Xin-Xin Wang Fen-Yao Li Ruo-Xuan Wang Ji-Hui He Jiao Fu Yan He 《World Journal of Stem Cells》 SCIE 2023年第10期960-978,共19页
Peripheral nerve injury(PNI)seriously affects people’s quality of life.Stem cell therapy is considered a promising new option for the clinical treatment of PNI.Dental stem cells,particularly dental pulp stem cells(DP... Peripheral nerve injury(PNI)seriously affects people’s quality of life.Stem cell therapy is considered a promising new option for the clinical treatment of PNI.Dental stem cells,particularly dental pulp stem cells(DPSCs),are adult pluripotent stem cells derived from the neuroectoderm.DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages,such as easy isolation,multidifferentiation potential,low immunogenicity,and low transplant rejection rate.DPSCs are extensively used in tissue engineering and regenerative medicine,including for the treatment of sciatic nerve injury,facial nerve injury,spinal cord injury,and other neurodegenerative diseases.This article reviews research related to DPSCs and their advantages in treating PNI,aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research. 展开更多
关键词 Dental pulp stem cells Peripheral nerve injury Regenerative medicine Neural regeneration schwann cells Stem cells engineering
下载PDF
Peripheral nerve regeneration through nerve conduits evokes differential expression of growth-associated protein-43 in the spinal cord 被引量:1
8
作者 Jesús Chato-Astrain Olga Roda +5 位作者 David Sánchez-Porras Esther Miralles Miguel Alaminos Fernando Campos Óscar Darío García-García Víctor Carriel 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1852-1856,共5页
Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upreg... Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upregulation to promote growth cone formation.Conversely,the limited regenerative capacity of the central nervous system due to an inhibitory environment prevents major changes in neurite outgrowth and should be presumably associated with low levels of growth-associated protein 43 expression.However,central alterations due to peripheral nerve damage have never been assessed using the growthassociated protein 43 marker.In this study,we used the tubulization technique to repair 1 cm-long nerve gaps in the rat nerve injury/repair model and detected growth-associated protein 43 expression in the peripheral and central nervous systems.First,histological analysis of the regeneration process confirmed an active regeneration process of the nerve gaps through the conduit from 10 days onwards.The growth-associated protein 43 expression profile varied across regions and follow-up times,from a localized expression to an abundant and consistent expression throughout the regeneration tissue,confirming the presence of an active nerve regeneration process.Second,spinal cord changes were also histologically assessed,and no apparent changes in the structural and cellular organization were observed using routine staining methods.Surprisingly,remarkable differences and local changes appeared in growth-associated protein 43 expression at the spinal cord level,in particular at 20 days post-repair and beyond.Growth-associated protein 43 protein was first localized in the gracile fasciculus and was homogeneously distributed in the left posterior cord.These findings differed from the growth-associated protein 43 pattern observed in the healthy control,which did not express growth-associated protein 43 at these levels.Our results revealed a differential expression in growth-associated protein 43 protein not only in the regenerating nerve tissue but also in the spinal cord after peripheral nerve transection.These findings open the possibility of using this marker to monitor changes in the central nervous system after peripheral nerve injury. 展开更多
关键词 growth-associated protein 43(GAP-43) IMMUNOHISTOCHEMISTRY nerve guide nerve tissue regeneration peripheral nerve repair spinal cord tissue engineering
下载PDF
Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation 被引量:3
9
作者 Aijun Hu Baoqi Zuo +2 位作者 Feng Zhang Qing Lan Huanxiang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第15期1171-1178,共8页
In this study, Schwann cells, at a density of 1 x 105 cells/well, were cultured on regenerated silk fibroin nanofibers (305 + 84 nm) prepared using the electrospinning method. Schwann cells cultured on the silk fib... In this study, Schwann cells, at a density of 1 x 105 cells/well, were cultured on regenerated silk fibroin nanofibers (305 + 84 nm) prepared using the electrospinning method. Schwann cells cultured on the silk fibroin nanofibers appeared more ordered, their processes extended further, and they formed more extensive and complex interconnections. In addition, the silk fibroin nanofibers had no impact on the proliferation of Schwann cells or on the secretion of ciliary neurotrophic factor, brain-derived neurotrophic factor or nerve growth factor. These findings indicate that regenerated electrospun silk fibroin nanofibers can promote Schwann cell adhesion, growth and proliferation, and have excellent biocompatibility. 展开更多
关键词 peripheral nerve regeneration nerve tissue engineering schwann cells silk fibroin ELECTROSPINNING neural regeneration
下载PDF
Transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury:A Web of Science-based literature analysis 被引量:2
10
作者 Xing Zhang Fei Yin +4 位作者 Li Guo Dongxu Zhao Gu Gong Lei Gao Qingsan Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第35期2818-2825,共8页
OBJECTIVE: To identify global research trends in transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury. DATA RETRIEVAL: We performed a bibliometric analysis of st... OBJECTIVE: To identify global research trends in transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury. DATA RETRIEVAL: We performed a bibliometric analysis of studies on transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury published from 2002 to 2011 and retrieved from the Web of Science, using the key words spinal cord injury along with either neural stem cell, Schwann cell or olfactory ensheathing cell. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed published articles on neural stem cells, Schwann cells or olfactory ensheathing cells for spinal cord injury indexed in the Web of Science; (b) original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial materials and news items; and (c) published between 2002 and 2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) corrected papers. MAIN OUTCOME MEASURES: (1)Annual publication output, distribution by journal, distribution by institution and top-cited articles on neural stem cells; (2) annual publication output, distribution by journal, distribution by institution and top-cited articles on Schwann cells; (3) annual publication output, distribution by journal, distribution by institution and top-cited articles on olfactory ensheathing cells. RESULTS: This analysis, based on articles indexed in the Web of Science, identified several research trends among studies published over the past 10 years in transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury. The number of publications increased over the 10-year period examined. Most papers appeared in journals with a focus on neurology, such as Journal of Neurotrauma, Experimental Neurology and Gila. Research institutes publishing on the use of neural stem cells to repair spinal cord injury were mostly in the USA and Canada. Those publishing on the use of Schwann cells were mostly in the USA and Canada as well. Those publishing on the use of olfactory ensheathing cells were mostly in the UK, the USA and Canada. CONCLUSION: On the basis of the large number of studies around the world, cell transplantation has proven to be the most promising therapeutic approach for spinal cord injury. 展开更多
关键词 spinal cord neuron nerve fiber neural stem cell schwann cell olfactory ensheathing cell TRANSPLANTATION genetic engineering tissue engineering neural regeneration
下载PDF
Chitosan/PLGA-based tissue engineered nerve grafts with SKP-SC-EVs enhance sciatic nerve regeneration in dogs through miR-30b-5p-mediated regulation of axon growth
11
作者 Miaomei Yu Mi Shen +12 位作者 Daiyue Chen Yan Li Qiang Zhou Chunyan Deng Xinyang Zhou Qi Zhang Qianru He Hongkui Wang Meng Cong Haiyan Shi Xiaosong Gu Songlin Zhou Fei Ding 《Bioactive Materials》 SCIE CSCD 2024年第10期378-395,共18页
Extracellular vesicles from skin-derived precursor Schwann cells(SKP-SC-EVs)promote neurite outgrowth in culture and enhance peripheral nerve regeneration in rats.This study aimed at expanding the application of SKPSC... Extracellular vesicles from skin-derived precursor Schwann cells(SKP-SC-EVs)promote neurite outgrowth in culture and enhance peripheral nerve regeneration in rats.This study aimed at expanding the application of SKPSC-EVs in nerve grafting by creating a chitosan/PLGA-based,SKP-SC-EVs-containing tissue engineered nerve graft(TENG)to bridge a 40-mm long sciatic nerve defect in dogs.SKP-SC-EVs contained in TENGs significantly accelerated the recovery of hind limb motor and electrophysiological functions,supported the outgrowth and myelination of regenerated axons,and alleviated the denervation-induced atrophy of target muscles in dogs.To clarify the underlying molecular mechanism,we observed that SKP-SC-EVs were rich in a variety of miRNAs linked to the axon growth of neurons,and miR-30b-5p was the most important among others.We further noted that miR-30b-5p contained within SKP-SC-EVs exerted nerve regeneration-promoting effects by targeting the Sin3a/HDAC complex and activating the phosphorylation of ERK,STAT3 or CREB.Our findings suggested that SKP-SC-EVs-incorporating TENGs represent a novel type of bioactive material with potential application for peripheral nerve repair in the clinic. 展开更多
关键词 Peripheral nerve regeneration Skin-derived precursor schwann cells Extracellular vesicles tissue engineered nerve graft miR-30b-5p Sin3a/HDAC complex
原文传递
Bone marrow mesenchymal stem cells in treatment of peripheral nerve injury
12
作者 Xiong-Fei Zou Bao-Zhong Zhang +1 位作者 Wen-Wei Qian Florence Mei Cheng 《World Journal of Stem Cells》 SCIE 2024年第8期799-810,共12页
Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI ... Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous trans-plantation ability.This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI.The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury.BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors,extracellular matrix molecules,and adhesion molecules.Additionally,BMSCs release pro-angiogenic factors to promote the formation of new blood vessels.They modulate cytokine expression and regulate macrophage polarization,leading to immunomodulation.Furthermore,BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration,thereby promoting neuronal repair and regeneration.Moreover,this review explores methods of applying BMSCs in PNI treatment,including direct cell trans-plantation into the injured neural tissue,implantation of BMSCs into nerve conduits providing support,and the application of genetically modified BMSCs,among others.These findings confirm the potential of BMSCs in treating PNI.However,with the development of this field,it is crucial to address issues related to BMSC therapy,including establishing standards for extracting,identifying,and cultivating BMSCs,as well as selecting application methods for BMSCs in PNI such as direct transplantation,tissue engineering,and genetic engineering.Addressing these issues will help translate current preclinical research results into clinical practice,providing new and effective treatment strategies for patients with PNI. 展开更多
关键词 Bone marrow mesenchymal stem cells Peripheral nerve injury schwann cells Myelin sheath tissue engineering
下载PDF
Decellularized optic nerve functional scaffold transplant facilitates directional axon regeneration and remyelination in the injured white matter of the rat spinal cord 被引量:6
13
作者 Yu-Rong Bai Bi-Qin Lai +6 位作者 Wei-Tao Han Jia-Hui Sun Ge Li Ying Ding Xiang Zeng Yuan-Huan Ma Yuan-Shan Zeng 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第11期2276-2283,共8页
Axon regeneration and remyelination of the damaged region is the most common repair strategy for spinal cord injury.However,achieving good outcome remains difficult.Our previous study showed that porcine decellularize... Axon regeneration and remyelination of the damaged region is the most common repair strategy for spinal cord injury.However,achieving good outcome remains difficult.Our previous study showed that porcine decellularized optic nerve better mimics the extracellular matrix of the embryonic porcine optic nerve and promotes the directional growth of dorsal root ganglion neurites.However,it has not been reported whether this material promotes axonal regeneration in vivo.In the present study,a porcine decellularized optic nerve was seeded with neurotrophin-3-overexpressing Schwann cells.This functional scaffold promoted the directional growth and remyelination of regenerating axons.In vitro,the porcine decellularized optic nerve contained many straight,longitudinal channels with a uniform distribution,and microscopic pores were present in the channel wall.The spatial micro topological structure and extracellular matrix were conducive to the adhesion,survival and migration of neural stem cells.The scaffold promoted the directional growth of dorsal root ganglion neurites,and showed strong potential for myelin regeneration.Furthermore,we transplanted the porcine decellularized optic nerve containing neurotrophin-3-overexpressing Schwann cells in a rat model of T10 spinal cord defect in vivo.Four weeks later,the regenerating axons grew straight,the myelin sheath in the injured/transplanted area recovered its structure,and simultaneously,the number of inflammatory cells and the expression of chondroitin sulfate proteoglycans were reduced.Together,these findings suggest that porcine decellularized optic nerve loaded with Schwann cells overexpressing neurotrophin-3 promotes the directional growth of regenerating spinal cord axons as well as myelin regeneration.All procedures involving animals were conducted in accordance with the ethical standards of the Institutional Animal Care and Use Committee of Sun Yat-sen University(approval No.SYSU-IACUC-2019-B034)on February 28,2019. 展开更多
关键词 axonal regeneration decellularized optic nerve directional regeneration functional scaffold microenvironment NEUROTROPHIN-3 optic nerve REMYELINATION schwann cells tissue engineering white matter injury
下载PDF
The influence of reduced graphene oxide on stem cells:a perspective in peripheral nerve regeneration 被引量:3
14
作者 Xiangyun Yao Zhiwen Yan +3 位作者 Xu Wang Huiquan Jiang Yun Qian Cunyi Fan 《Regenerative Biomaterials》 SCIE 2021年第4期88-96,共9页
Graphene and its derivatives are fascinating materials for their extraordinary electrochemical and mechanical properties.In recent decades,many researchers explored their applications in tissue engineering and regener... Graphene and its derivatives are fascinating materials for their extraordinary electrochemical and mechanical properties.In recent decades,many researchers explored their applications in tissue engineering and regenerative medicine.Reduced graphene oxide(rGO)possesses remarkable structural and functional resemblance to graphene,although some residual oxygen-containing groups and defects exist in the structure.Such structure holds great potential since the remnantoxygenated groups can further be functionalized or modified.Moreover,oxygen-containing groups can improve the dispersion of rGO in organic or aqueous media.Therefore,it is preferable to utilize rGO in the production of composite materials.The rGO composite scaffolds provide favorable extracellular microenvironment and affect the cellular behavior of cultured cells in the peripheral nerve regeneration.On the one hand,rGO impacts on Schwann cells and neurons which are major components of peripheral nerves.On the other hand,rGO-incorporated composite scaffolds promote the neurogenic differentiation of several stem cells,including embryonic stem cells,mesenchymal stem cells,adipose-derived stem cells and neural stem cells.This review will briefly introduce the production and major properties of rGO,and its potential in modulating the cellular behaviors of specific stem cells.Finally,we present its emerging roles in the production of composite scaffolds for nerve tissue engineering. 展开更多
关键词 reduced graphene oxide nerve regeneration tissue engineering BIOMATERIALS stem cell
原文传递
Role of adipose tissue grafting and adipose-derived stem cells in peripheral nerve surgery 被引量:1
15
作者 Tiam M.Saffari Sara Saffari +2 位作者 Krishna S.Vyas Samir Mardini Alexander Y.Shin 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第10期2179-2184,共6页
The application of autologous fat grafting in reconstructive surgery is commonly used to improve functional form.This review aims to provide an overview of the scientific evidence on the biology of adipose tissue,the ... The application of autologous fat grafting in reconstructive surgery is commonly used to improve functional form.This review aims to provide an overview of the scientific evidence on the biology of adipose tissue,the role of adipose-derived stem cells,and the indications of adipose tissue grafting in peripheral nerve surgery.Adipose tissue is easily accessible through the lower abdomen and inner thighs.Non-vascularized adipose tissue grafting does not support oxidative and ischemic stress,resulting in variable survival of adipocytes within the first 24 hours.Enrichment of adipose tissue with a stromal vascular fraction is purported to increase the number of adipose-derived stem cells and is postulated to augment the long-term stability of adipose tissue grafts.Basic science nerve research suggests an increase in nerve regeneration and nerve revascularization,and a decrease in nerve fibrosis after the addition of adipose-derived stem cells or adipose tissue.In clinical studies,the use of autologous lipofilling is mostly applied to secondary carpal tunnel release revisions with promising results.Since the use of adipose-derived stem cells in peripheral nerve reconstruction is relatively new,more studies are needed to explore safety and long-term effects on peripheral nerve regeneration.The Food and Drug Administration stipulates that adipose-derived stem cell transplantation should be minimally manipulated,enzyme-free,and used in the same surgical procedure,e.g.adipose tissue grafts that contain native adipose-derived stem cells or stromal vascular fraction.Future research may be shifted towards the use of tissue-engineered adipose tissue to create a supportive microenvironment for autologous graft survival.Shelf-ready alternatives could be enhanced with adipose-derived stem cells or growth factors and eliminate the need for adipose tissue harvest. 展开更多
关键词 adipose tissue adipose-derived stem cells angiogenesis autologous fat grafting nerve injury nerve regeneration paracrine environment peripheral nerve reconstruction stem cell secretome tissue engineering
下载PDF
Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering
16
作者 Juan WANG Binbin SUN +7 位作者 Muhammad Aqeel BHUTTO Tonghe ZHU Kui YU Jiayu BAO Yosry MORSI Hany EL-HAMSHARY Mohamed EL-NEWEHY Xiumei MO 《Frontiers of Materials Science》 SCIE CSCD 2017年第1期22-32,共11页
Electrospun nanofibers have gained widespreading interest for tissue engineering application. In the present study, ApF/P(LLA-CL) nanofibrous scaffolds were fabricated via electrospinning. The feasibility of the mat... Electrospun nanofibers have gained widespreading interest for tissue engineering application. In the present study, ApF/P(LLA-CL) nanofibrous scaffolds were fabricated via electrospinning. The feasibility of the material as tissue engineering nerve scaffold was investigated in vitro. The average diameter increased with decreasing the blend ratio of ApF to P(LLA-CL). Characterization of 13C NMR and FTIR clarified that there is no obvious chemical bond reaction between ApF and P(LLA-CL). The tensile strength and elongation at break increased with the content increase of P(LLA-CL). The surface hydrophilic property of nanofibrous scaffolds enhanced with the increased content of ApF. Cell viability studies with Schwann cells demonstrated that ApFIP(LLA-CL) blended nanofibrous scaffolds significantly promoted cell growth as compare to P(LLA-CL), especially when the weight ratio of ApF to P(LLA-CL) was 25:75. The present work provides a basis for further studies of this novel nanofibrous material (ApF/P(LLA-CL)) in peripheral nerve tissue repair or regeneration. 展开更多
关键词 KEYWORDS: ApFIP(LLA-CL) ELECTROSPINNING NANOFIBERS scaffolds schwann cells peripheral nerve tissue engineering
原文传递
Differentiation of mesenchymal stem cells into neuronal cells on fetal bovine acellular dermal matrix as a tissue engineered nerve scaffold 被引量:4
17
作者 Yuping Feng Jiao Wang +5 位作者 Shixin Ling Zhuo Li Mingsheng Li Qiongyi Li Zongren Ma Sijiu Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第22期1968-1978,共11页
The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells fol-lowing induction with neural di... The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells fol-lowing induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined speciifc neu-ronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuro-nal-speciifc proteins, includingβIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differen-tiation medium differentiated into a multilayered neural network-like structure with long nerve ifbers that was composed of several parallel microifbers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sec-tioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve. 展开更多
关键词 nerve regeneration peripheral nerve defects fetal bovine acellular dermal matrix biological scaffold bone marrow mesenchymal stem cells neuronal differentiation neurons tissue engineered nerve neural regeneration
下载PDF
Combining acellular nerve allografts with brainderived neurotrophic factor transfected bone marrow mesenchymal stem cells restores sciatic nerve injury better than either intervention alone 被引量:7
18
作者 Yanru Zhang Hui Zhang +2 位作者 Gechen Zhang Ka Ka Wenhua Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第20期1814-1819,共6页
In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bo... In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchyrnal stem cells group. Results showed that at 8 weeks after bridging, sciatic functional index, triceps wet weight recovery rate, myelin thickness, and number of myelinated nerve fibers were significantly changed in the three groups. Variations were the largest in the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells group compared with the other two groups. Experimental findings suggest that chemically extracted acellular nerve allograft combined nerve factor and mesenchymal stem cells can promote the restoration of sciatic nerve defects. The repair effect seen is better than the single application of acellular nerve allograft or acellular nerve allograft combined mesenchymal stem cell transplantation. 展开更多
关键词 nerve regeneration peripheral nerve regeneration peripheral nerve injury chemicallyextracted acellular nerve brain-derived neurotrophic factor bone marrow mesenchymal stem cells nerve tissue engineering neural regeneration
下载PDF
Tissue-engineered rhesus monkey nerve grafts for the repair of long ulnar nerve defects:similar outcomes to autologous nerve grafts 被引量:5
19
作者 Chang-qing Jiang Jun Hu +3 位作者 Jian-ping Xiang Jia-kai Zhu Xiao-lin Liu Peng Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第11期1845-1850,共6页
Acellular nerve allografts can help preserve normal nerve structure and extracellular matrix composition. These allografts have low immunogenicity and are more readily available than autologous nerves for the repair o... Acellular nerve allografts can help preserve normal nerve structure and extracellular matrix composition. These allografts have low immunogenicity and are more readily available than autologous nerves for the repair of long-segment peripheral nerve defects. In this study, we repaired a 40-mm ulnar nerve defect in rhesus monkeys with tissue-engineered peripheral nerve, and compared the outcome with that of autograft. The graft was prepared using a chemical extract from adult rhesus monkeys and seeded with allogeneic Schwann cells. Pathomo- rphology, electromyogram and immunohistochemistry findings revealed the absence of palmar erosion or ulcers, and that the morphology and elasticity of the hypothenar eminence were normal 5 months postoperatively. There were no significant differences in the mean peak compound muscle action potential, the mean nerve conduction velocity, or the number of neurofilaments between the experimental and control groups. However, outcome was significantly better in the experimental group than in the blank group. These findings suggest that chemically extracted allogeneic nerve seeded with autologous Schwann cells can repair 40-mm ulnar nerve defects in the rhesus monkey. The outcomes are similar to those obtained with autologous nerve graft. 展开更多
关键词 nerve regeneration peripheral nerve injury tissue engineering rhesus monkey ulnar nerve chemical extraction allogenic nerve autologous nerve TRANSPLANTATION schwann cells neural regeneration
下载PDF
Mesenchymal stem cell treatment for peripheral nerve injury:a narrative review 被引量:7
20
作者 Rui-Cheng Zhang Wen-Qi Du +6 位作者 Jing-Yuan Zhang Shao-Xia Yu Fang-Zhi Lu Hong-Mei Ding Yan-Bo Cheng Chao Ren De-Qin Geng 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第11期2170-2176,共7页
Peripheral nerve injuries occur as the result of sudden trauma and lead to reduced quality of life.The peripheral nervous system has an inherent capability to regenerate axons.However,peripheral nerve regeneration fol... Peripheral nerve injuries occur as the result of sudden trauma and lead to reduced quality of life.The peripheral nervous system has an inherent capability to regenerate axons.However,peripheral nerve regeneration following injury is generally slow and incomplete that results in poor functional outcomes such as muscle atrophy.Although conventional surgical procedures for peripheral nerve injuries present many benefits,there are still several limitations including scarring,difficult accessibility to donor nerve,neuroma formation and a need to sacrifice the autologous nerve.For many years,other therapeutic approaches for peripheral nerve injuries have been explored,the most notable being the replacement of Schwann cells,the glial cells responsible for clearing out debris from the site of injury.Introducing cultured Schwann cells to the injured sites showed great benefits in promoting axonal regeneration and functional recovery.However,there are limited sources of Schwann cells for extraction and difficulties in culturing Schwann cells in vitro.Therefore,novel therapeutic avenues that offer maximum benefits for the treatment of peripheral nerve injuries should be investigated.This review focused on strategies using mesenchymal stem cells to promote peripheral nerve regeneration including exosomes of mesenchymal stem cells,nerve engineering using the nerve guidance conduits containing mesenchymal stem cells,and genetically engineered mesenchymal stem cells.We present the current progress of mesenchymal stem cell treatment of peripheral nerve injuries. 展开更多
关键词 axonal regeneration EXOSOMES genetic engineering mesenchymal stem cells neural conduit peripheral nerve peripheral nerve injury peripheral nerve regeneration schwann cells sudden trauma
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部