期刊文献+
共找到29,413篇文章
< 1 2 250 >
每页显示 20 50 100
Identify information sources with different start times in complex networks based on sparse observers
1
作者 Yuan-Zhang Deng Zhao-Long Hu +3 位作者 Feilong Lin Chang-Bing Tang Hui Wang Yi-Zhen Huang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期467-479,共13页
The dissemination of information across various locations is an ubiquitous occurrence,however,prevalent methodologies for multi-source identification frequently overlook the fact that sources may initiate disseminatio... The dissemination of information across various locations is an ubiquitous occurrence,however,prevalent methodologies for multi-source identification frequently overlook the fact that sources may initiate dissemination at distinct initial moments.Although there are many research results of multi-source identification,the challenge of locating sources with varying initiation times using a limited subset of observational nodes remains unresolved.In this study,we provide the backward spread tree theorem and source centrality theorem,and develop a backward spread centrality algorithm to identify all the information sources that trigger the spread at different start times.The proposed algorithm does not require prior knowledge of the number of sources,however,it can estimate both the initial spread moment and the spread duration.The core concept of this algorithm involves inferring suspected sources through source centrality theorem and locating the source from the suspected sources with linear programming.Extensive experiments from synthetic and real network simulation corroborate the superiority of our method in terms of both efficacy and efficiency.Furthermore,we find that our method maintains robustness irrespective of the number of sources and the average degree of network.Compared with classical and state-of-the art source identification methods,our method generally improves the AUROC value by 0.1 to 0.2. 展开更多
关键词 complex networks information spread source identification backward spread centricity
下载PDF
Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems
2
作者 Sang-min Lee Namgi Kim 《Computers, Materials & Continua》 SCIE EI 2024年第2期1897-1914,共18页
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ... Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets. 展开更多
关键词 Deep learning graph neural network graph convolution network graph convolution network model learning method recommender information systems
下载PDF
Research on Fine-Grained Recognition Method for Sensitive Information in Social Networks Based on CLIP
3
作者 Menghan Zhang Fangfang Shan +1 位作者 Mengyao Liu Zhenyu Wang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1565-1580,共16页
With the emergence and development of social networks,people can stay in touch with friends,family,and colleagues more quickly and conveniently,regardless of their location.This ubiquitous digital internet environment... With the emergence and development of social networks,people can stay in touch with friends,family,and colleagues more quickly and conveniently,regardless of their location.This ubiquitous digital internet environment has also led to large-scale disclosure of personal privacy.Due to the complexity and subtlety of sensitive information,traditional sensitive information identification technologies cannot thoroughly address the characteristics of each piece of data,thus weakening the deep connections between text and images.In this context,this paper adopts the CLIP model as a modality discriminator.By using comparative learning between sensitive image descriptions and images,the similarity between the images and the sensitive descriptions is obtained to determine whether the images contain sensitive information.This provides the basis for identifying sensitive information using different modalities.Specifically,if the original data does not contain sensitive information,only single-modality text-sensitive information identification is performed;if the original data contains sensitive information,multimodality sensitive information identification is conducted.This approach allows for differentiated processing of each piece of data,thereby achieving more accurate sensitive information identification.The aforementioned modality discriminator can address the limitations of existing sensitive information identification technologies,making the identification of sensitive information from the original data more appropriate and precise. 展开更多
关键词 Deep learning social networks sensitive information recognition multi-modal fusion
下载PDF
Studying the co-evolution of information diffusion,vaccination behavior and disease transmission in multilayer networks with local and global effects
4
作者 霍良安 武兵杰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期677-689,共13页
Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between inf... Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between information and the disease transmission process using complex networks.In fact,the disease transmission process is very complex.Besides this information,there will often be individual behavioral measures and other factors to consider.Most of the previous research has aimed to establish a two-layer network model to consider the impact of information on the transmission process of disease,rarely divided into information and behavior,respectively.To carry out a more in-depth analysis of the disease transmission process and the intrinsic influencing mechanism,this paper divides information and behavior into two layers and proposes the establishment of a complex network to study the dynamic co-evolution of information diffusion,vaccination behavior,and disease transmission.This is achieved by considering four influential relationships between adjacent layers in multilayer networks.In the information layer,the diffusion process of negative information is described,and the feedback effects of local and global vaccination are considered.In the behavioral layer,an individual's vaccination behavior is described,and the probability of an individual receiving a vaccination is influenced by two factors:the influence of negative information,and the influence of local and global disease severity.In the disease layer,individual susceptibility is considered to be influenced by vaccination behavior.The state transition equations are derived using the micro Markov chain approach(MMCA),and disease prevalence thresholds are obtained.It is demonstrated through simulation experiments that the negative information diffusion is less influenced by local vaccination behavior,and is mainly influenced by global vaccination behavior;vaccination behavior is mainly influenced by local disease conditions,and is less influenced by global disease conditions;the disease transmission threshold increases with the increasing vaccination rate;and the scale of disease transmission increases with the increasing negative information diffusion rate and decreases with the increasing vaccination rate.Finally,it is found that when individual vaccination behavior considers both the influence of negative information and disease,it can increase the disease transmission threshold and reduce the scale of disease transmission.Therefore,we should resist the diffusion of negative information,increase vaccination proportions,and take appropriate protective measures in time. 展开更多
关键词 information diffusion vaccination behavior disease transmission multilayer networks local and global effect
下载PDF
Automatic Extraction of Medical Latent Variables from ECG Signals Utilizing a Mutual Information-Based Technique and Capsular Neural Networks for Arrhythmia Detection
5
作者 Abbas Ali Hassan Fardin Abdali-Mohammadi 《Computers, Materials & Continua》 SCIE EI 2024年第10期971-983,共13页
From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each other.Therefore,all these leads report different aspects of an arrhythmia.Their difference... From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each other.Therefore,all these leads report different aspects of an arrhythmia.Their differences lie in the level of highlighting and displaying information about that arrhythmia.For example,although all leads show traces of atrial excitation,this function is more evident in lead II than in any other lead.In this article,a new model was proposed using ECG functional and structural dependencies between heart leads.In the prescreening stage,the ECG signals are segmented from the QRS point so that further analyzes can be performed on these segments in a more detailed manner.The mutual information indices were used to assess the relationship between leads.In order to calculate mutual information,the correlation between the 12 ECG leads has been calculated.The output of this step is a matrix containing all mutual information.Furthermore,to calculate the structural information of ECG signals,a capsule neural network was implemented to aid physicians in the automatic classification of cardiac arrhythmias.The architecture of this capsule neural network has been modified to perform the classification task.In the experimental results section,the proposed model was used to classify arrhythmias in ECG signals from the Chapman dataset.Numerical evaluations showed that this model has a precision of 97.02%,recall of 96.13%,F1-score of 96.57%and accuracy of 97.38%,indicating acceptable performance compared to other state-of-the-art methods.The proposed method shows an average accuracy of 2%superiority over similar works. 展开更多
关键词 Heart diseases electrocardiogram signal signal correlation mutual information capsule neural networks
下载PDF
A Privacy Preservation Method for Attributed Social Network Based on Negative Representation of Information
6
作者 Hao Jiang Yuerong Liao +2 位作者 Dongdong Zhao Wenjian Luo Xingyi Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1045-1075,共31页
Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself disc... Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components. 展开更多
关键词 Attributed social network topology privacy node attribute privacy negative representation of information negative survey negative database
下载PDF
Wireless Information and Power Transfer in Underwater Acoustic Sensor Networks
7
作者 Feng Yizhi Ji Fei 《China Communications》 SCIE CSCD 2024年第10期256-266,共11页
Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the te... Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the terminals. The application of WIPT to the underwater acoustic sensor networks(UWASNs) not only retains the long range communication capabilities, but also provides an auxiliary and convenient energy supplement way for the terminal sensors, and thus is a promising scheme to solve the energy-limited problem for the UWASNs. In this paper, we propose the integration of WIPT into the UWASNs and provide an overview on various enabling techniques for the WIPT based UWASNs(WIPT-UWASNs) as well as pointing out future research challenges and opportunities for WIPT-UWASNs. 展开更多
关键词 underwater acoustic modem underwater acoustic sensor network(UWASN) wireless information and power transfer(WIPT)
下载PDF
Research on College Network Information Security Protection in the Digital Economy Era
8
作者 Libin Zhang 《Proceedings of Business and Economic Studies》 2024年第2期132-137,共6页
In the era of the digital economy,the informatization degree of various industries is getting deeper and deeper,and network information security has also come into people’s eyes.Colleges and universities are in the p... In the era of the digital economy,the informatization degree of various industries is getting deeper and deeper,and network information security has also come into people’s eyes.Colleges and universities are in the position of training applied talents,because of the needs of teaching and education,as well as the requirements of teaching reform,the information construction of colleges and universities has been gradually improved,but the problem of network information security is also worth causing people to ponder.The low security of the network environment will cause college network information security leaks,and even hackers will attack the official website of the university and leak the personal information of teachers and students.To solve such problems,this paper studies the protection of college network information security against the background of the digital economy era.This paper first analyzes the significance of network information security protection,then points out the current and moral problems,and finally puts forward specific countermeasures,hoping to create a safe learning environment for teachers and students for reference. 展开更多
关键词 Digital economy Universities and colleges network information security Protection status COUNTERMEASURES
下载PDF
Research on Heterogeneous Information Network Link Prediction Based on Representation Learning
9
作者 Yan Zhao Weifeng Rao +1 位作者 Zihui Hu Qi Zheng 《Journal of Electronic Research and Application》 2024年第5期32-37,共6页
A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and oth... A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and other fields.Link prediction,as a key task to reveal the unobserved relationships in the network,is of great significance in heterogeneous information networks.This paper reviews the application of presentation-based learning methods in link prediction of heterogeneous information networks.This paper introduces the basic concepts of heterogeneous information networks,and the theoretical basis of representation learning,and discusses the specific application of the deep learning model in node embedding learning and link prediction in detail.The effectiveness and superiority of these methods on multiple real data sets are demonstrated by experimental verification. 展开更多
关键词 Heterogeneous information network Link prediction Presentation learning Deep learning Node embedding
下载PDF
Efficient Bayesian networks for slope safety evaluation with large quantity monitoring information 被引量:8
10
作者 Xueyou Li Limin Zhang Shuai Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1679-1687,共9页
New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical me... New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical mechanisms. A Bayesian network for a slope involving correlated material properties and dozens of observational points is constructed. 展开更多
关键词 SLOPE reliability Monitoring information BAYESIAN networks RISK management VALUE of information BIG data
下载PDF
An Adaptive Routing Algorithm for Integrated Information Networks 被引量:11
11
作者 Feng Wang Dingde Jiang Sheng Qi 《China Communications》 SCIE CSCD 2019年第7期195-206,共12页
The integrated information network is a large capacity information network that integrates various communication platforms on the ground, at sea, in the air and in the deep air through the inter-satellite and satellit... The integrated information network is a large capacity information network that integrates various communication platforms on the ground, at sea, in the air and in the deep air through the inter-satellite and satellite-ground links to acquire information accurately, process it quickly, and transmit it efficiently. The satellite communication, as an important part of integrated information networks, is one of main approaches to acquire, process and distribute communication information and resources. In this paper, based on current researches of the satellite communication network, we put forward a 3-layer satellite communication network model based on the Software Defined Network (SDN). Meanwhile, to improve current routing policies of the Low Earth Orbit (LEO) satellite communication network, we put forward an Adaptive Routing Algorithm (ARA) to sustain the shortest satellite communication link. Experiment results show that the proposed method can effectively reduce link distance and communication delay, and realize adaptive path planning. 展开更多
关键词 INTEGRATED information network software defined network SATELLITE communication ROUTING POLICY adaptive PATH planning
下载PDF
Evolution Characteristics of Government-Industry-University Cooperative Innovation Network of Electronic Information Industry in Liaoning Province, China 被引量:8
12
作者 PENG Fei ZHANG Qiqi +2 位作者 HAN Zenglin DING Yan FU Ningning 《Chinese Geographical Science》 SCIE CSCD 2019年第3期528-540,共13页
It is important to optimize the cooperative innovation network for the improvement of economic competence and innovative power. Based on the patent information services platform, we obtain invention patent data for th... It is important to optimize the cooperative innovation network for the improvement of economic competence and innovative power. Based on the patent information services platform, we obtain invention patent data for the electronic information industry in Liaoning from 1985 to 2015. This paper analyzes the cooperative innovation network structure, its spatiotemporal evolution and the triple helix relationship of government-industry-university(GIU) by using the social network analysis method and the triple helix theory as well as UCINet, ArcGIS and NetDraw. The empirical results show that: 1) the number of the subjects of the electronic information industry GIU cooperative innovation network in Liaoning demonstrates a gradual increase from 1985 to 2015, with the same trend in concentration. In terms of its subject and its centrality, the universities have a higher position, and the industries have a lower position,while the status of the government is still unclear. 2) The cooperative innovation network presents a core-periphery structure, and the polarization effect of innovation subjects tends to be obvious. There is certain distance-decay regularity in the cooperative innovation network, and a strong geographical proximity to cooperative innovation. 3) The compactness shows a downward trend as a whole. In terms of the extent of participation, the industries are better than the government but worse than the universities. This means that the cooperative innovation network of GIU in the electronic information industry in Liaoning is in the initial stage of formation. 展开更多
关键词 government-industry-university (GIU) COOPERATIVE innovation network triple HELIX electronic information INDUSTRY Liaoning Province
下载PDF
Simulating the Spreading of Two Competing Public Opinion Information on Complex Network 被引量:9
13
作者 Mengshu Xie Zhen Jia +1 位作者 Yanfei Chen Qixiang Deng 《Applied Mathematics》 2012年第9期1074-1078,共5页
In this paper, we investigate the regularity of spreading of information and public opinions towards two competing products in complex networks. By building its mathematical model and simulating its evolution process,... In this paper, we investigate the regularity of spreading of information and public opinions towards two competing products in complex networks. By building its mathematical model and simulating its evolution process, we have found the statistical regularity for support rates of two different products at a steady stage. The research shows that strength of the public opinion spreading is proportional to the final support rates of a product. 展开更多
关键词 COMPLEX network PUBLIC OPINION information Competing SPREADING
下载PDF
Subtle role of latency for information diffusion in online social networks 被引量:4
14
作者 熊菲 王夕萌 程军军 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第10期587-595,共9页
Information diffusion in online social networks is induced by the event of forwarding information for users, and latency exists widely in user spreading behaviors. Little work has been done to reveal the effect of lat... Information diffusion in online social networks is induced by the event of forwarding information for users, and latency exists widely in user spreading behaviors. Little work has been done to reveal the effect of latency on the diffusion process. In this paper, we propose a propagation model in which nodes may suspend their spreading actions for a waiting period of stochastic length. These latent nodes may recover their activity again. Meanwhile, the mechanism of forwarding information is also introduced into the diffusion model. Mean-field analysis and numerical simulations indicate that our model has three nontrivial results. First, the spreading threshold does not correlate with latency in neither homogeneous nor heterogeneous networks, but depends on the spreading and refractory parameter. Furthermore, latency affects the diffusion process and changes the infection scale. A large or small latency parameter leads to a larger final diffusion extent, but the intrinsic dynamics is different. Large latency implies forwarding information rapidly, while small latency prevents nodes from dropping out of interactions. In addition, the betweenness is a better descriptor to identify influential nodes in the model with latency, compared with the coreness and degree. These results are helpful in understanding some collective phenomena of the diffusion process and taking measures to restrain a rumor in social networks. 展开更多
关键词 information diffusion node latency user behavior complex networks
下载PDF
Research on fault-tolerant control of networked control systems based on information scheduling 被引量:5
15
作者 Huo Zhihong Zhang Zhixue Fang Huajing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1024-1028,共5页
A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced... A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced, and robust fault-tolerant control problem of networked control systems with noise disturbance under actuator failures is studied. The parametric expression of the controller under actuator failures is given. Furthermore, the result is analyzed by simulation tests, which not only satisfies the networked control systems stability, but also decreases the data information number in network channel and makes full use of the network resources. 展开更多
关键词 networked control systems fault-tolerant control information scheduling linear matrix inequality.
下载PDF
Social Network Information Propagation Model Based on Individual Behavior 被引量:9
16
作者 Lejun Zhang Hongjie Li +1 位作者 Chunhui Zhao Xiaoying Lei 《China Communications》 SCIE CSCD 2017年第7期78-92,共15页
In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behav... In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behavior of individuals, and we define and quantify these factors. We consider these factors as characteristic attributes and use a Bayesian classifier to classify individuals. Considering the forwarding delay characteristics of information dissemination, we present a random time generation method that simulates the delay of information dissemination. Given time and other constraints, a user might not look at all the information that his/her friends published. Therefore, this paper proposes an algorithm to predict information visibility, i.e., it estimates the probability that an individual will see the information. Based on the classification of individual behavior and combined with our random time generation and information visibility prediction method, we propose an information dissemination model based on individual behavior. The model can be used to predict the scale and speed of information propagation. We use data sets from Sina Weibo to validate and analyze the prediction methods of the individual behavior and information dissemination model based on individual behavior. A previously proposedinformation dissemination model provides the foundation for a subsequent study on the evolution of the network and social network analysis. Predicting the scale and speed of information dissemination can also be used for public opinion monitoring. 展开更多
关键词 social network information propagation individual behavior propagation delay
下载PDF
Cultivated land information extraction in UAV imagery based on deep convolutional neural network and transfer learning 被引量:14
17
作者 LU Heng FU Xiao +3 位作者 LIU Chao LI Long-guo HE Yu-xin LI Nai-wen 《Journal of Mountain Science》 SCIE CSCD 2017年第4期731-741,共11页
The development of precision agriculture demands high accuracy and efficiency of cultivated land information extraction. As a new means of monitoring the ground in recent years, unmanned aerial vehicle (UAV) low-hei... The development of precision agriculture demands high accuracy and efficiency of cultivated land information extraction. As a new means of monitoring the ground in recent years, unmanned aerial vehicle (UAV) low-height remote sensing technique, which is flexible, efficient with low cost and with high resolution, is widely applied to investing various resources. Based on this, a novel extraction method for cultivated land information based on Deep Convolutional Neural Network and Transfer Learning (DTCLE) was proposed. First, linear features (roads and ridges etc.) were excluded based on Deep Convolutional Neural Network (DCNN). Next, feature extraction method learned from DCNN was used to cultivated land information extraction by introducing transfer learning mechanism. Last, cultivated land information extraction results were completed by the DTCLE and eCognifion for cultivated land information extraction (ECLE). The location of the Pengzhou County and Guanghan County, Sichuan Province were selected for the experimental purpose. The experimental results showed that the overall precision for the experimental image 1, 2 and 3 (of extracting cultivated land) with the DTCLE method was 91.7%, 88.1% and 88.2% respectively, and the overall precision of ECLE is 9o.7%, 90.5% and 87.0%, respectively. Accuracy of DTCLE was equivalent to that of ECLE, and also outperformed ECLE in terms of integrity and continuity. 展开更多
关键词 Unmanned aerial vehicle Cultivated land Deep convolutional neural network Transfer learning information extraction
下载PDF
Uncertain information fusion with robust adaptive neural networks-fuzzy reasoning 被引量:2
18
作者 Zhang Yinan Sun Qingwei +2 位作者 Quan He Jin Yonggao Quan Taifan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期495-501,共7页
In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as ... In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm. 展开更多
关键词 uncertain information information fusion neural networks fuzzy inference robust estimate.
下载PDF
Review on uncertainty analysis and information fusion diagnosis of aircraft control system
19
作者 ZHOU Keyi LU Ningyun +1 位作者 JIANG Bin MENG Xianfeng 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1245-1263,共19页
In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and comp... In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends. 展开更多
关键词 aircraft control system sensor networks information fusion fault diagnosis UNCERTAINTY
下载PDF
Transient Thermal Distribution in a Wavy Fin Using Finite Difference Approximation Based Physics Informed Neural Network
20
作者 Sara Salem Alzaid Badr Saad T.Alkahtani +1 位作者 Kumar Chandan Ravikumar Shashikala Varun Kumar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2555-2574,共20页
Heat transport has been significantly enhanced by the widespread usage of extended surfaces in various engi-neering domains.Gas turbine blade cooling,refrigeration,and electronic equipment cooling are a few prevalent ... Heat transport has been significantly enhanced by the widespread usage of extended surfaces in various engi-neering domains.Gas turbine blade cooling,refrigeration,and electronic equipment cooling are a few prevalent applications.Thus,the thermal analysis of extended surfaces has been the subject of a significant assessment by researchers.Motivated by this,the present study describes the unsteady thermal dispersal phenomena in a wavy fin with the presence of convection heat transmission.This analysis also emphasizes a novel mathematical model in accordance with transient thermal change in a wavy profiled fin resulting from convection using the finite difference method(FDM)and physics informed neural network(PINN).The time and space-dependent governing partial differential equation(PDE)for the suggested heat problem has been translated into a dimensionless form using the relevant dimensionless terms.The graph depicts the effect of thermal parameters on the fin’s thermal profile.The temperature dispersion in the fin decreases as the dimensionless convection-conduction variable rises.The heat dispersion in the fin is decreased by increasing the aspect ratio,whereas the reverse behavior is seen with the time change.Furthermore,FDM-PINN results are validated against the outcomes of the FDM. 展开更多
关键词 Heat transfer CONVECTION FIN machine learning physics informed neural network
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部