Since 2018,the US government has adopted a range of restrictive measures on China-US science and technology exchange,as it strives for a decoupling strategy against China.This strategy has brought about historic chang...Since 2018,the US government has adopted a range of restrictive measures on China-US science and technology exchange,as it strives for a decoupling strategy against China.This strategy has brought about historic change in China-US science and technology relations.The US government has set out to obstruct the free flow of technology,data,capital,markets,and talents between China and the United States,thereby changing the basic rationale of China-US science and technology cooperation.The US has multiple underlying motivations for implementing this strategy including recognizing the security threats posed by China’s cutting-edge technology development,treating China as a competitor in global science and technology diplomacy,prompting the backflow of the technological industrial chain,and the strengthened industrial competition between the two countries.Decoupling is one of the competition strategies of the United States.It is aimed at ensuring a favorable position for their national innovation systems,particularly in China-US competition.However,the limitations of the decoupling strategy may not allow the US to achieve what it desires.These limitations also provide space for the two countries to ease their competitive relationship.展开更多
The agricultural energy consumption per unit of GDP is selected as an indicator for measuring the development level of low-carbon agriculture. Using gray relational theory, I analyze the relationship between developme...The agricultural energy consumption per unit of GDP is selected as an indicator for measuring the development level of low-carbon agriculture. Using gray relational theory, I analyze the relationship between development level of agricultural science and technology and development level of low-carbon agriculture in China. The results show that the correlation between the two is prominent; the number of agricultural science and technology talents, the number of agricultural science and technology patents, and the number of agricultural science and technology input are three major factors influencing the development of low-carbon agriculture. On this basis, I propose to take further effective measures, and put forth corresponding recommendations, in order to improve the level of agricultural science and technology.展开更多
Introduction and Invitation DICP Symposium is a special series of interna-tional conference named after the Dalian Instituteof Chemical Physics (DICP). The DICP Symposiumwas founded with the purpose to promote the int...Introduction and Invitation DICP Symposium is a special series of interna-tional conference named after the Dalian Instituteof Chemical Physics (DICP). The DICP Symposiumwas founded with the purpose to promote the interna-tional communication and collaboration between theDICP and the international scientific community, to展开更多
This journal provides an international medium for the publication of theoretical and experimental studies related to the fields of Mineral, Metallurgy and Materials. Papers dealing with mineral processing, mining, min...This journal provides an international medium for the publication of theoretical and experimental studies related to the fields of Mineral, Metallurgy and Materials. Papers dealing with mineral processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, metals working, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.展开更多
In this paper, based on the Science and Technology Statistics in Beijing Statistical Yearbook, grey theory is used to study the relationship among S&T (Science and Technology) activities personnel, R&D (resear...In this paper, based on the Science and Technology Statistics in Beijing Statistical Yearbook, grey theory is used to study the relationship among S&T (Science and Technology) activities personnel, R&D (research and development) personnel FTE (Full Time Equivalent), intramural expenditure for R&D and Patent Application Amount. According to the grey correlation coefficient, screening of grey GM(1,N) prediction variables, the grey prediction model is established. Meanwhile, time series model and GM(1,1) model are established for patent applications and R&D personnel equivalent FTE. By comparing the simulating results with the real data, the absolute relative error of prediction models is less than 10%. The results of the prediction model are tested. In order to improve the prediction accuracy, the mean values of the predicted values of the two models are brought into the GM(1,N) model to predict the number of scientific and technical personnel in Beijing during 2015-2025. Forecast results show that the number of science and technology personnel in Beijing will grow with exponential growth trend in the next ten years, which has a certain reference value for predicting the science and technology activities and formulating the policy in Beijing.展开更多
Purpose: First, to review the state-of-the-art in patent citation analysis, particularly characteristics of patent citations to scientific literature (scientific non-patent references, SNPRs). Second, to present a ...Purpose: First, to review the state-of-the-art in patent citation analysis, particularly characteristics of patent citations to scientific literature (scientific non-patent references, SNPRs). Second, to present a novel mapping approach to identify technology-relevant research based on the papers cited by and referring to the SNPRs. Design/methodology/approach: In the review part we discuss the context of SNPRs such as the time lags between scientific achievements and inventions. Also patent-to-patent citation is addressed particularly because this type of patent citation analysis is a major element in the assessment of the economic value of patents. We also review the research on the role of universities and researchers in technological development, with important issues such as universities as sources of technological knowledge and inventor-author relations. We conclude the review part of this paper with an overview of recent research on mapping and network analysis of the science and technology interface and of technological progress in interaction with science. In the second part we apply new techniques for the direct visualization of the cited and citing relations of SNPRs, the mapping of the landscape around SNPRs by bibliographic coupling and co-citation analysis, and the mapping of the conceptual environment of SNPRs by keyword co-occurrence analysis. Findings: We discuss several properties of SNPRs. Only a small minority of publications covered by the Web of Science or Scopus are cited by patents, about 3%-4%. However, for publications based on university-industry collaboration the number of SNPRs is considerably higher, around 15%. The proposed mapping methodology based on a "second order SNPR approach" enables a better assessment of the technological relevance of research. Research limitations: The main limitation is that a more advanced merging of patent and publication data, in particular unification of author and inventor names, in still a necessity. Practical implications: The proposed mapping methodology enables the creation of a database of technology-relevant papers (TRPs). In a bibliometric assessment the publications of research groups, research programs or institutes can be matched with the TRPs and thus the extent to which the work of groups, programs or institutes are relevant for technological development can be measured. Originality/value: The review part examines a wide range of findings in the research of patent citation analysis. The mapping approach to identify a broad range of technologyrelevant papers is novel and offers new opportunities in research evaluation practices.展开更多
How to solve the coupling relations in a 6 - DOF parallel robot quickly and accurately within the limits of realtime control is a critical problem. In traditional analytic method, the complicated mathemtical model mus...How to solve the coupling relations in a 6 - DOF parallel robot quickly and accurately within the limits of realtime control is a critical problem. In traditional analytic method, the complicated mathemtical model must first be constructed and then solved by programming.Obviously, this method is not very practical. This paper,therefore, proposes a new way of approach with a new method using 3- D animation for the solving of coupling relations in the 6 - DOF parallel robot. This method is much simpler and its solving accuracy approaches that of the more complicated analytic method.展开更多
文摘Since 2018,the US government has adopted a range of restrictive measures on China-US science and technology exchange,as it strives for a decoupling strategy against China.This strategy has brought about historic change in China-US science and technology relations.The US government has set out to obstruct the free flow of technology,data,capital,markets,and talents between China and the United States,thereby changing the basic rationale of China-US science and technology cooperation.The US has multiple underlying motivations for implementing this strategy including recognizing the security threats posed by China’s cutting-edge technology development,treating China as a competitor in global science and technology diplomacy,prompting the backflow of the technological industrial chain,and the strengthened industrial competition between the two countries.Decoupling is one of the competition strategies of the United States.It is aimed at ensuring a favorable position for their national innovation systems,particularly in China-US competition.However,the limitations of the decoupling strategy may not allow the US to achieve what it desires.These limitations also provide space for the two countries to ease their competitive relationship.
基金Supported by the Project of Jiangsu Provincial Department of Education (2011SJD630046)the Project of Huai'an Federation of Social Sciences (C-11-15)
文摘The agricultural energy consumption per unit of GDP is selected as an indicator for measuring the development level of low-carbon agriculture. Using gray relational theory, I analyze the relationship between development level of agricultural science and technology and development level of low-carbon agriculture in China. The results show that the correlation between the two is prominent; the number of agricultural science and technology talents, the number of agricultural science and technology patents, and the number of agricultural science and technology input are three major factors influencing the development of low-carbon agriculture. On this basis, I propose to take further effective measures, and put forth corresponding recommendations, in order to improve the level of agricultural science and technology.
文摘Introduction and Invitation DICP Symposium is a special series of interna-tional conference named after the Dalian Instituteof Chemical Physics (DICP). The DICP Symposiumwas founded with the purpose to promote the interna-tional communication and collaboration between theDICP and the international scientific community, to
文摘This journal provides an international medium for the publication of theoretical and experimental studies related to the fields of Mineral, Metallurgy and Materials. Papers dealing with mineral processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, metals working, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.
文摘In this paper, based on the Science and Technology Statistics in Beijing Statistical Yearbook, grey theory is used to study the relationship among S&T (Science and Technology) activities personnel, R&D (research and development) personnel FTE (Full Time Equivalent), intramural expenditure for R&D and Patent Application Amount. According to the grey correlation coefficient, screening of grey GM(1,N) prediction variables, the grey prediction model is established. Meanwhile, time series model and GM(1,1) model are established for patent applications and R&D personnel equivalent FTE. By comparing the simulating results with the real data, the absolute relative error of prediction models is less than 10%. The results of the prediction model are tested. In order to improve the prediction accuracy, the mean values of the predicted values of the two models are brought into the GM(1,N) model to predict the number of scientific and technical personnel in Beijing during 2015-2025. Forecast results show that the number of science and technology personnel in Beijing will grow with exponential growth trend in the next ten years, which has a certain reference value for predicting the science and technology activities and formulating the policy in Beijing.
文摘Purpose: First, to review the state-of-the-art in patent citation analysis, particularly characteristics of patent citations to scientific literature (scientific non-patent references, SNPRs). Second, to present a novel mapping approach to identify technology-relevant research based on the papers cited by and referring to the SNPRs. Design/methodology/approach: In the review part we discuss the context of SNPRs such as the time lags between scientific achievements and inventions. Also patent-to-patent citation is addressed particularly because this type of patent citation analysis is a major element in the assessment of the economic value of patents. We also review the research on the role of universities and researchers in technological development, with important issues such as universities as sources of technological knowledge and inventor-author relations. We conclude the review part of this paper with an overview of recent research on mapping and network analysis of the science and technology interface and of technological progress in interaction with science. In the second part we apply new techniques for the direct visualization of the cited and citing relations of SNPRs, the mapping of the landscape around SNPRs by bibliographic coupling and co-citation analysis, and the mapping of the conceptual environment of SNPRs by keyword co-occurrence analysis. Findings: We discuss several properties of SNPRs. Only a small minority of publications covered by the Web of Science or Scopus are cited by patents, about 3%-4%. However, for publications based on university-industry collaboration the number of SNPRs is considerably higher, around 15%. The proposed mapping methodology based on a "second order SNPR approach" enables a better assessment of the technological relevance of research. Research limitations: The main limitation is that a more advanced merging of patent and publication data, in particular unification of author and inventor names, in still a necessity. Practical implications: The proposed mapping methodology enables the creation of a database of technology-relevant papers (TRPs). In a bibliometric assessment the publications of research groups, research programs or institutes can be matched with the TRPs and thus the extent to which the work of groups, programs or institutes are relevant for technological development can be measured. Originality/value: The review part examines a wide range of findings in the research of patent citation analysis. The mapping approach to identify a broad range of technologyrelevant papers is novel and offers new opportunities in research evaluation practices.
文摘How to solve the coupling relations in a 6 - DOF parallel robot quickly and accurately within the limits of realtime control is a critical problem. In traditional analytic method, the complicated mathemtical model must first be constructed and then solved by programming.Obviously, this method is not very practical. This paper,therefore, proposes a new way of approach with a new method using 3- D animation for the solving of coupling relations in the 6 - DOF parallel robot. This method is much simpler and its solving accuracy approaches that of the more complicated analytic method.