Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow d...Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow down disease progression,there is no cure for multiple sclerosis.The gut-brain axis refers to complex communications between the gut flo ra and the immune,nervous,and endocrine systems,which bridges the functions of the gut and the brain.Disruptions in the gut flora,termed dys biosis,can lead to systemic inflammation,leaky gut syndrome,and increased susceptibility to infections.The pathogenesis of multiple sclerosis involves a combination of genetic and environmental factors,and gut flora may play a pivotal role in regulating immune responses related to multiple scle rosis.To develop more effective therapies for multiple scle rosis,we should further uncover the disease processes involved in multiple sclerosis and gain a better understanding of the gut-brain axis.This review provides an overview of the role of the gut flora in multiple scle rosis.展开更多
Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves ...Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves both upper and lower motor neurons,human and animal studies over the years have highlighted the potential spread to other motor and non-motor regions,expanding the phenotype of ALS.Although superoxide dismutase 1(SOD1)mutations represent a minority of ALS cases,the SOD1 gene remains a milestone in ALS research as it represents the first genetic target for personalized therapies.Despite numerous single case reports or case series exhibiting extramotor symptoms in patients with ALS mutations in SOD1(SOD1-ALS),no studies have comprehensively explored the full spectrum of extramotor neurological manifestations in this subpopulation.In this narrative review,we analyze and discuss the available literature on extrapyramidal and non-motor features during SOD1-ALS.The multifaceted expression of SOD1 could deepen our understanding of the pathogenic mechanisms,pointing towards a multidisciplinary approach for affected patients in light of new therapeutic strategies for SOD1-ALS.展开更多
Biomarke rs are required for the early detection,prognosis prediction,and monitoring of amyotrophic lateral sclerosis,a progressive disease.Proteomics is an unbiased and quantitative method that can be used to detect ...Biomarke rs are required for the early detection,prognosis prediction,and monitoring of amyotrophic lateral sclerosis,a progressive disease.Proteomics is an unbiased and quantitative method that can be used to detect neurochemical signatures to aid in the identification of candidate biomarke rs.In this study,we used a label-free quantitative proteomics approach to screen for substantially differentially regulated proteins in ten patients with sporadic amyotrophic lateral scle rosis compared with five healthy controls.Su bstantial upregulation of serum proteins related to multiple functional clusters was observed in patients with spo radic amyotrophic lateral sclerosis.Potential biomarke rs were selected based on functionality and expression specificity.To validate the proteomics profiles,blood samples from an additional cohort comprising 100 patients with sporadic amyotrophic lateral sclerosis and 100 healthy controls were subjected to enzyme-linked immunosorbent assay.Eight substantially upregulated serum proteins in patients with spora dic amyotrophic lateral sclerosis were selected,of which the cathelicidin-related antimicrobial peptide demonstrated the best discriminative ability between patients with sporadic amyotrophic lateral sclerosis and healthy controls(area under the curve[AUC]=0.713,P<0.0001).To further enhance diagnostic accuracy,a multi-protein combined discriminant algorithm was developed incorporating five proteins(hemoglobin beta,cathelicidin-related antimicrobial peptide,talin-1,zyxin,and translationally-controlled tumor protein).The algo rithm achieved an AUC of 0.811 and a P-value of<0.0001,resulting in 79%sensitivity and 71%specificity for the diagnosis of sporadic amyotrophic lateral scle rosis.Subsequently,the ability of candidate biomarkers to discriminate between early-stage amyotrophic lateral sclerosis patients and controls,as well as patients with different disease severities,was examined.A two-protein panel comprising talin-1 and translationally-controlled tumor protein effectively distinguished early-stage amyotrophic lateral sclerosis patients from controls(AUC=0.766,P<0.0001).Moreove r,the expression of three proteins(FK506 binding protein 1A,cathelicidin-related antimicrobial peptide,and hemoglobin beta-1)was found to increase with disease progression.The proteomic signatures developed in this study may help facilitate early diagnosis and monitor the progression of sporadic amyotrophic lateral sclerosis when used in co mbination with curre nt clinical-based parameters.展开更多
The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves t...The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation).展开更多
Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understan...Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.展开更多
Advances in clinical care and recent research achievements:Primary lateral sclerosis(PLS)has traditionally been regarded as a pure upper motor neuron condition,a view perpetuated by most medical textbooks.
Multiple sclerosis(MS)is a debilitating inflammatory disease of the central nervous system characterized by immune-mediated segmental demyelination and variable degrees of axonal and neuronal degeneration that contrib...Multiple sclerosis(MS)is a debilitating inflammatory disease of the central nervous system characterized by immune-mediated segmental demyelination and variable degrees of axonal and neuronal degeneration that contribute to disability.Inducing efficient and effective repair programs following demyelination is a major goal and challenge in MS.Conventional MS therapies focus largely on modulating the immune aspects of the disease contributing to lesions.While this alleviates some symptoms and mitigates damage,it does not tackle the fundamental challenge of effective remyelination,which few MS patients experience,especially in the progressive phase of the disease.展开更多
Multiple sclerosis(MS) is a chronic inflammatory and demyelinating disease of the central nervous system(CNS). Patients with MS experience sensory and motor function loss due to myelin and/or axon damage perpetuated b...Multiple sclerosis(MS) is a chronic inflammatory and demyelinating disease of the central nervous system(CNS). Patients with MS experience sensory and motor function loss due to myelin and/or axon damage perpetuated by infiltrating immune cells(Hauser and Cree, 2020).展开更多
Amyotrophic lateral sclerosis(ALS),also known as Lou Geh rig's disease,is a progressive neurodegenerative disorder that affects motor neurons in the brain and spinal cord.This leads to muscle weakness,paralysis,an...Amyotrophic lateral sclerosis(ALS),also known as Lou Geh rig's disease,is a progressive neurodegenerative disorder that affects motor neurons in the brain and spinal cord.This leads to muscle weakness,paralysis,and ultimately,respiratory failure(Cha and Kim,2022).展开更多
Frontotemporal dementia(FTD) and amyotrophic lateral sclerosis(ALS) are neurodegenerative diseases that belong to the same disease spectrum,with overlapping of genetic and pathological features.Genetic mutations in TA...Frontotemporal dementia(FTD) and amyotrophic lateral sclerosis(ALS) are neurodegenerative diseases that belong to the same disease spectrum,with overlapping of genetic and pathological features.Genetic mutations in TARDBP,C9ORF72,MAPT,and GRN have been identified in these diseases.展开更多
Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disease.The majority of ALS cases are sporadic with only about 20%of familial forms.Even in families with genetic predisposition,there is significan...Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disease.The majority of ALS cases are sporadic with only about 20%of familial forms.Even in families with genetic predisposition,there is significant phenotypic variability,suggesting that ALS onset may be triggered by a combination of genetic factors.展开更多
Amyotrophic lateral sclerosis(ALS)is a rare neurological disease,featuring gradual loss of muscle controls due to degeneration of motor neurons.Unfortunately,there is currently no cure for ALS.The available therapies ...Amyotrophic lateral sclerosis(ALS)is a rare neurological disease,featuring gradual loss of muscle controls due to degeneration of motor neurons.Unfortunately,there is currently no cure for ALS.The available therapies only offer a limited extension of survival by several months,begging for more options of therapeutics.展开更多
Tremor occurs in about half of multiple sclerosis(MS)patients.MS tremor has a broad frequency range of 2.5-7 Hz,with a higher prevalence of postural tremor(44%)compared to intentional tremor(6%)(Alusi et al.,2001).Tre...Tremor occurs in about half of multiple sclerosis(MS)patients.MS tremor has a broad frequency range of 2.5-7 Hz,with a higher prevalence of postural tremor(44%)compared to intentional tremor(6%)(Alusi et al.,2001).Tremor may affect the upper and lower extremities,head,and trunk,and may even affect the vocal cords in isolated cases of palatal tremor.MS tremor is classically attributed to lesions of the brain stem,cerebellum,or cerebellar peduncles,and tremor intensity has been shown to correlate with the number of lesions or their functional connections.However,recent work has demonstrated that inflammatory damage to the cerebello-thalamic and cortico-thalamic pathways might also play an important role in causing tremor,as it co-occurs with other signs and symptoms of MS such as dysarthria,dysmetria,dysdiadochokinesia,and dystonia(Alusi et al.,2001).展开更多
Amyotrophic lateral sclerosis(ALS) is a fastprogressing fatal neurodegenerative disease and the most common form of motor neuron disease.There is currently no cure and approximately 90% of cases are sporadic.ALS share...Amyotrophic lateral sclerosis(ALS) is a fastprogressing fatal neurodegenerative disease and the most common form of motor neuron disease.There is currently no cure and approximately 90% of cases are sporadic.ALS shares genetic causes,clinical and neuropathological features with frontotemporal dementia,the second most common form of presenile dementia.ALS and frontotemporal dementia are therefore considered a disease spectrum(Abramzon et al.,2020).展开更多
Amyotrophic lateral sclerosis(ALS)is a devastating neurological disease characterized by the accumulation of aberrant proteins in motor neurons of the brain and spinal cord.Patients with ALS develop skeletal muscle we...Amyotrophic lateral sclerosis(ALS)is a devastating neurological disease characterized by the accumulation of aberrant proteins in motor neurons of the brain and spinal cord.Patients with ALS develop skeletal muscle weakness,resulting in death from respiratory paralysis,which usually occurs 2-4 years after clinical onset(Goutman et al.,2022).展开更多
文摘Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow down disease progression,there is no cure for multiple sclerosis.The gut-brain axis refers to complex communications between the gut flo ra and the immune,nervous,and endocrine systems,which bridges the functions of the gut and the brain.Disruptions in the gut flora,termed dys biosis,can lead to systemic inflammation,leaky gut syndrome,and increased susceptibility to infections.The pathogenesis of multiple sclerosis involves a combination of genetic and environmental factors,and gut flora may play a pivotal role in regulating immune responses related to multiple scle rosis.To develop more effective therapies for multiple scle rosis,we should further uncover the disease processes involved in multiple sclerosis and gain a better understanding of the gut-brain axis.This review provides an overview of the role of the gut flora in multiple scle rosis.
文摘Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves both upper and lower motor neurons,human and animal studies over the years have highlighted the potential spread to other motor and non-motor regions,expanding the phenotype of ALS.Although superoxide dismutase 1(SOD1)mutations represent a minority of ALS cases,the SOD1 gene remains a milestone in ALS research as it represents the first genetic target for personalized therapies.Despite numerous single case reports or case series exhibiting extramotor symptoms in patients with ALS mutations in SOD1(SOD1-ALS),no studies have comprehensively explored the full spectrum of extramotor neurological manifestations in this subpopulation.In this narrative review,we analyze and discuss the available literature on extrapyramidal and non-motor features during SOD1-ALS.The multifaceted expression of SOD1 could deepen our understanding of the pathogenic mechanisms,pointing towards a multidisciplinary approach for affected patients in light of new therapeutic strategies for SOD1-ALS.
基金supported by the grants from Shanghai Shuguang Plan Project,No.18SG15(to SC)Shanghai Outstanding Young Scholars Project+2 种基金Shanghai Talent Development Project,No.2019044(to SC)Medical-engineering cross fund of Shanghai Jiao Tong University,No.YG2022QN009(to QZ)the National Natural Science Foundation of China,No.82201558(to QZ)。
文摘Biomarke rs are required for the early detection,prognosis prediction,and monitoring of amyotrophic lateral sclerosis,a progressive disease.Proteomics is an unbiased and quantitative method that can be used to detect neurochemical signatures to aid in the identification of candidate biomarke rs.In this study,we used a label-free quantitative proteomics approach to screen for substantially differentially regulated proteins in ten patients with sporadic amyotrophic lateral scle rosis compared with five healthy controls.Su bstantial upregulation of serum proteins related to multiple functional clusters was observed in patients with spo radic amyotrophic lateral sclerosis.Potential biomarke rs were selected based on functionality and expression specificity.To validate the proteomics profiles,blood samples from an additional cohort comprising 100 patients with sporadic amyotrophic lateral sclerosis and 100 healthy controls were subjected to enzyme-linked immunosorbent assay.Eight substantially upregulated serum proteins in patients with spora dic amyotrophic lateral sclerosis were selected,of which the cathelicidin-related antimicrobial peptide demonstrated the best discriminative ability between patients with sporadic amyotrophic lateral sclerosis and healthy controls(area under the curve[AUC]=0.713,P<0.0001).To further enhance diagnostic accuracy,a multi-protein combined discriminant algorithm was developed incorporating five proteins(hemoglobin beta,cathelicidin-related antimicrobial peptide,talin-1,zyxin,and translationally-controlled tumor protein).The algo rithm achieved an AUC of 0.811 and a P-value of<0.0001,resulting in 79%sensitivity and 71%specificity for the diagnosis of sporadic amyotrophic lateral scle rosis.Subsequently,the ability of candidate biomarkers to discriminate between early-stage amyotrophic lateral sclerosis patients and controls,as well as patients with different disease severities,was examined.A two-protein panel comprising talin-1 and translationally-controlled tumor protein effectively distinguished early-stage amyotrophic lateral sclerosis patients from controls(AUC=0.766,P<0.0001).Moreove r,the expression of three proteins(FK506 binding protein 1A,cathelicidin-related antimicrobial peptide,and hemoglobin beta-1)was found to increase with disease progression.The proteomic signatures developed in this study may help facilitate early diagnosis and monitor the progression of sporadic amyotrophic lateral sclerosis when used in co mbination with curre nt clinical-based parameters.
基金in part supported by the National Natural Science Foundation of China,Nos.30560042,81160161,81360198,and 82160255Education Department of Jiangxi Province,Nos.GJJ13198 and GJJ170021+1 种基金Jiangxi Provincial Department of Science and Technology,No.20192BAB205043Health and Family Planning Commission of Jiangxi Province,Nos.20181019 and 202210002(all to RX)。
文摘The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation).
基金funded by NIH-NIA R01AG061708 (to PHO)Patrick Grange Memorial Foundation (to PHO)+1 种基金A Long Swim (to PHO)CureSPG4 Foundation (to PHO)。
文摘Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.
基金sponsored by the Spastic Paraplegia Foundation(SPF)(to PB).Professor PB is also supported by the Health Research Board(HRB EIA-2017-019&JPND-Cofund-2-2019-1)the Irish Institute of Clinical Neuroscience(IICN)+1 种基金the EU Joint Programme-Neurodegenerative Disease Research(JPND)the Andrew Lydon Scholarship,The Hayes Family Charitable Fund and the Iris O’Brien Foundation.
文摘Advances in clinical care and recent research achievements:Primary lateral sclerosis(PLS)has traditionally been regarded as a pure upper motor neuron condition,a view perpetuated by most medical textbooks.
基金supported by MS Canada research grants#2362Canadian Institutes of Health Research(CIHR)grants#142328𬵲+1 种基金University of Saskatchewan College of Medicine CoMRAD grant to VMKVsupported by University of Saskatchewan College of Graduate and Postdoctoral Studies and College of Medicine Scholarships.
文摘Multiple sclerosis(MS)is a debilitating inflammatory disease of the central nervous system characterized by immune-mediated segmental demyelination and variable degrees of axonal and neuronal degeneration that contribute to disability.Inducing efficient and effective repair programs following demyelination is a major goal and challenge in MS.Conventional MS therapies focus largely on modulating the immune aspects of the disease contributing to lesions.While this alleviates some symptoms and mitigates damage,it does not tackle the fundamental challenge of effective remyelination,which few MS patients experience,especially in the progressive phase of the disease.
文摘Multiple sclerosis(MS) is a chronic inflammatory and demyelinating disease of the central nervous system(CNS). Patients with MS experience sensory and motor function loss due to myelin and/or axon damage perpetuated by infiltrating immune cells(Hauser and Cree, 2020).
基金supported by the BK21 FOUR(Fostering Outstanding Universities for Research)the Basic Science Research Program through the National Research Foundation of Korea(NRF)+2 种基金the Regional Innovation Mega Project Program through the Korea Innovation Foundation funded by the Ministry of Education(MOE)the Ministry of Science and ICT(MSIT)(NRF-2022R1A2C1004204,RS-2023-00219563,2023-DD-UP-0007)the Soonchunhyang University Research Fund(to KK)。
文摘Amyotrophic lateral sclerosis(ALS),also known as Lou Geh rig's disease,is a progressive neurodegenerative disorder that affects motor neurons in the brain and spinal cord.This leads to muscle weakness,paralysis,and ultimately,respiratory failure(Cha and Kim,2022).
文摘Frontotemporal dementia(FTD) and amyotrophic lateral sclerosis(ALS) are neurodegenerative diseases that belong to the same disease spectrum,with overlapping of genetic and pathological features.Genetic mutations in TARDBP,C9ORF72,MAPT,and GRN have been identified in these diseases.
基金supported by VA Merit Award 1 I01 BX004824-01National Institute of Diabetes and Digestive and Kidney Diseases(R01DK105118-01 and R01DK114126)United States Department of Defense Congressionally Directed Medical Research Programs(BC191198)(all to JS)。
文摘Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disease.The majority of ALS cases are sporadic with only about 20%of familial forms.Even in families with genetic predisposition,there is significant phenotypic variability,suggesting that ALS onset may be triggered by a combination of genetic factors.
基金supported by the TARCC,Welch Foundation Award(1-1724)the Decherd Foundation,the Pope Adarms FoundationNIH grants NS092616,NS127375,NS117065,and NS111776(to CLZ)。
文摘Amyotrophic lateral sclerosis(ALS)is a rare neurological disease,featuring gradual loss of muscle controls due to degeneration of motor neurons.Unfortunately,there is currently no cure for ALS.The available therapies only offer a limited extension of survival by several months,begging for more options of therapeutics.
基金supported by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)Project-ID 424778381-TRR 295(to MM)the Fondazione Grigioni per il Morbo di Parkinson(to IUI).
文摘Tremor occurs in about half of multiple sclerosis(MS)patients.MS tremor has a broad frequency range of 2.5-7 Hz,with a higher prevalence of postural tremor(44%)compared to intentional tremor(6%)(Alusi et al.,2001).Tremor may affect the upper and lower extremities,head,and trunk,and may even affect the vocal cords in isolated cases of palatal tremor.MS tremor is classically attributed to lesions of the brain stem,cerebellum,or cerebellar peduncles,and tremor intensity has been shown to correlate with the number of lesions or their functional connections.However,recent work has demonstrated that inflammatory damage to the cerebello-thalamic and cortico-thalamic pathways might also play an important role in causing tremor,as it co-occurs with other signs and symptoms of MS such as dysarthria,dysmetria,dysdiadochokinesia,and dystonia(Alusi et al.,2001).
基金supported by grants from the UK Medical Research Council (MR/R022666/1)Alzheimer’s Disease Society (AlzSoc-28 7)+4 种基金Alzheimer’s Research UK (ARUK-PG2017B-3 and ARUK-DC2019-009) to CCJMa Motor Neurone Disease Association Fellowship to PGS and a King’s College Guy’s and St Thomas’s studentship to NHPGSis supported by an MSCA-Sealof Excellence-HEALTH fellowship (IHMC22/00025) from the Instituto de Salud CarlosⅢ(ISCⅢ)funded by the"Mecanismo para la Recuperacion y la Resiliencia"(MRR) program from The NextGenerationEU funds (European Union)by Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas-lnstituto de Salud CarlosⅢ(CIBER-CIBERNED-ISCⅢ)(CB06/05/0041)。
文摘Amyotrophic lateral sclerosis(ALS) is a fastprogressing fatal neurodegenerative disease and the most common form of motor neuron disease.There is currently no cure and approximately 90% of cases are sporadic.ALS shares genetic causes,clinical and neuropathological features with frontotemporal dementia,the second most common form of presenile dementia.ALS and frontotemporal dementia are therefore considered a disease spectrum(Abramzon et al.,2020).
基金supported in port by the JSPS KAKENHI(grant number 22K07539 to MS)funded by Mitsubishi Tanabe Pharma Corporation。
文摘Amyotrophic lateral sclerosis(ALS)is a devastating neurological disease characterized by the accumulation of aberrant proteins in motor neurons of the brain and spinal cord.Patients with ALS develop skeletal muscle weakness,resulting in death from respiratory paralysis,which usually occurs 2-4 years after clinical onset(Goutman et al.,2022).