Give constrains of costs and technology in analysis,actual practice of 2D FEM is widely popular and demanded.In order to take advantage of 2D FEM to simulate 3D stress state,the concept of stress releasing ratio was g...Give constrains of costs and technology in analysis,actual practice of 2D FEM is widely popular and demanded.In order to take advantage of 2D FEM to simulate 3D stress state,the concept of stress releasing ratio was generally introduced to represent the 3D constraint effect.For example,the simulation analysis of tunnel excavation is based on the measured actual deformation to provide stress releasing ratio.In the engi- neering of open excavation,the construction is,most of the case,targeted on alluvial de- posit with relatively soft stratum.However,the 2D FEM simulation lacks a clear and ra- tional basis in how to represent the effects of 3D constraint.Thus,in order to investigate the problem above,the author analyzed same engineering using both 2D and 3D individu- ally,and compared the corresponding results.Based on the 3D analysis,factors including the relationship between the model's scope,stress releasing ratio,and construction condi- tion of 2D analysis were also examined.展开更多
In Belgium,the Boom clay was selected as a potential host formation for the disposal of high-level radioactive waste(HLW).To demonstrate the suitability of Boom clay for bearing thermal load induced by the HLW,a lar...In Belgium,the Boom clay was selected as a potential host formation for the disposal of high-level radioactive waste(HLW).To demonstrate the suitability of Boom clay for bearing thermal load induced by the HLW,a large-scale in-situ heater test,called PRACLAY heater test,will be conducted in the underground research laboratory(URL) in Mol.Owing to the limitations of the test(a short period of time compared with that considered in a real repository,different boundary conditions,etc.),the test is designed to simulate,in a conservative way,the most critical state and phenomena that could occur in the host rock.The PRACLAY gallery was excavated at the end of 2007;the heating phase will begin in 2010 and will last for at least 10 years.The PRACLAY gallery itself leaves an opportunity to study the possibilities of sealing a disposal drift in Boom clay and testing the feasibility of hydraulic cut-off of any preferential pathway to the main access gallery through the excavation damage zone(EDZ) and the lining with a seal in a horizontal drift(horizontal seal).Indeed,this is a generic problem for all deep geological disposal facilities for HLW.An annular seal made of compacted swelling bentonite will be installed in the front of the heated part of the PRACLAY gallery for these purposes.This paper provides detailed considerations on the thermo-hydro-mechanical(THM) boundary conditions for the design of the PRACLAY heater test and the seal test with the support of numerical calculations.It is believed that these important items considered in the PRACLAY heater test design also constitute key issues for the repository design.The outcome of the PRACLAY heater test will be an important milestone for the Belgian repository design.展开更多
This study uses numerical simulations to examine a case of sea fog that was observed from 20 to 22 March2011 on the southern China coast. The observation dataset includes observatory data, cloud-top temperature from M...This study uses numerical simulations to examine a case of sea fog that was observed from 20 to 22 March2011 on the southern China coast. The observation dataset includes observatory data, cloud-top temperature from MODIS, GPS sonde, and data from the Integrated Observation Platform for Marine Meteorology(IOPMM). The simulations are based on the Weather Research and Forecasting(WRF) model with four distinct parameter settings.Both the observations and simulations focus on the characteristics of the fog extent, boundary layer structure, and meteorological elements near the air-sea interface. Our main results are as follows:(1) The extent of mesoscale sea fog can be well simulated when the sea surface temperature has at least 0.5 ×0.5 horizontal resolution.(2) To accurately model the vertical structure of the sea fog, particularly the surface-based inversion, vertical levels must be added in the boundary layer.(3) When these model conditions are met, the simulations faithfully reproduce the measured downward shortwave radiation, downward longwave radiation, and surface sensible heat flux during the sea fog period.展开更多
The boundary layer is a buffer layer of water and heat exchange between the atmosphere and permafrost. Based on the atmospheric boundary layer and heat transfer theory, we established a method for determining the boun...The boundary layer is a buffer layer of water and heat exchange between the atmosphere and permafrost. Based on the atmospheric boundary layer and heat transfer theory, we established a method for determining the boundary layer thickness of engineering pavement (asphalt and sand pavement) in permafrost region. The boundary layer can be divided into the Boundary Layer Above Surface (BLAS) and the Boundary Layer Below Surface (BLBS). From in-situ monitoring data, the thickness of BLAS was determined through the laminar thickness, and the thickness of BLBS was determined through ground temperature, the heat conduction function, and the mean attenuation function (α). For asphalt pavement, the BLAS thickness varied between 2.90 and 4.31 mm and that of BLBS varied between 28.00 and 45.38 cm. For sand pavement, the BLAS thickness varied between 2.55 and 3.29 mm and that of BLBS varied between 15.00 and 46.44 cm. The thickness varied with freezing and thawing processes. The boundary layer calculation method described in this paper can provide a relatively stable boundary for temperature field analysis.展开更多
文摘Give constrains of costs and technology in analysis,actual practice of 2D FEM is widely popular and demanded.In order to take advantage of 2D FEM to simulate 3D stress state,the concept of stress releasing ratio was generally introduced to represent the 3D constraint effect.For example,the simulation analysis of tunnel excavation is based on the measured actual deformation to provide stress releasing ratio.In the engi- neering of open excavation,the construction is,most of the case,targeted on alluvial de- posit with relatively soft stratum.However,the 2D FEM simulation lacks a clear and ra- tional basis in how to represent the effects of 3D constraint.Thus,in order to investigate the problem above,the author analyzed same engineering using both 2D and 3D individu- ally,and compared the corresponding results.Based on the 3D analysis,factors including the relationship between the model's scope,stress releasing ratio,and construction condi- tion of 2D analysis were also examined.
文摘In Belgium,the Boom clay was selected as a potential host formation for the disposal of high-level radioactive waste(HLW).To demonstrate the suitability of Boom clay for bearing thermal load induced by the HLW,a large-scale in-situ heater test,called PRACLAY heater test,will be conducted in the underground research laboratory(URL) in Mol.Owing to the limitations of the test(a short period of time compared with that considered in a real repository,different boundary conditions,etc.),the test is designed to simulate,in a conservative way,the most critical state and phenomena that could occur in the host rock.The PRACLAY gallery was excavated at the end of 2007;the heating phase will begin in 2010 and will last for at least 10 years.The PRACLAY gallery itself leaves an opportunity to study the possibilities of sealing a disposal drift in Boom clay and testing the feasibility of hydraulic cut-off of any preferential pathway to the main access gallery through the excavation damage zone(EDZ) and the lining with a seal in a horizontal drift(horizontal seal).Indeed,this is a generic problem for all deep geological disposal facilities for HLW.An annular seal made of compacted swelling bentonite will be installed in the front of the heated part of the PRACLAY gallery for these purposes.This paper provides detailed considerations on the thermo-hydro-mechanical(THM) boundary conditions for the design of the PRACLAY heater test and the seal test with the support of numerical calculations.It is believed that these important items considered in the PRACLAY heater test design also constitute key issues for the repository design.The outcome of the PRACLAY heater test will be an important milestone for the Belgian repository design.
基金National Natural Science Foundation of China(4127502541175013)+2 种基金Guangdong Science and Technology Plan Project(2008030303072,2012A061400012)Meteorological Sciences Research Project(2013B06,2013Q04,2014B08)Early Warning and Forecasting Technology for Marine Meteorology of the Guangdong Meteorological Bureau
文摘This study uses numerical simulations to examine a case of sea fog that was observed from 20 to 22 March2011 on the southern China coast. The observation dataset includes observatory data, cloud-top temperature from MODIS, GPS sonde, and data from the Integrated Observation Platform for Marine Meteorology(IOPMM). The simulations are based on the Weather Research and Forecasting(WRF) model with four distinct parameter settings.Both the observations and simulations focus on the characteristics of the fog extent, boundary layer structure, and meteorological elements near the air-sea interface. Our main results are as follows:(1) The extent of mesoscale sea fog can be well simulated when the sea surface temperature has at least 0.5 ×0.5 horizontal resolution.(2) To accurately model the vertical structure of the sea fog, particularly the surface-based inversion, vertical levels must be added in the boundary layer.(3) When these model conditions are met, the simulations faithfully reproduce the measured downward shortwave radiation, downward longwave radiation, and surface sensible heat flux during the sea fog period.
基金supported by the Natural Science Foundation of China (41330634 and 41301071)the Independent Research Project of State Key Laboratory of Frozen Soil Engineering (SKLFSE-ZQ-19)
文摘The boundary layer is a buffer layer of water and heat exchange between the atmosphere and permafrost. Based on the atmospheric boundary layer and heat transfer theory, we established a method for determining the boundary layer thickness of engineering pavement (asphalt and sand pavement) in permafrost region. The boundary layer can be divided into the Boundary Layer Above Surface (BLAS) and the Boundary Layer Below Surface (BLBS). From in-situ monitoring data, the thickness of BLAS was determined through the laminar thickness, and the thickness of BLBS was determined through ground temperature, the heat conduction function, and the mean attenuation function (α). For asphalt pavement, the BLAS thickness varied between 2.90 and 4.31 mm and that of BLBS varied between 28.00 and 45.38 cm. For sand pavement, the BLAS thickness varied between 2.55 and 3.29 mm and that of BLBS varied between 15.00 and 46.44 cm. The thickness varied with freezing and thawing processes. The boundary layer calculation method described in this paper can provide a relatively stable boundary for temperature field analysis.