A horizontal two-dimensional numerical model is developed for estimation of sediment transport and sea bed change around it large circular cylinder tinder wave action, The wave model is based on an elliptic mild slope...A horizontal two-dimensional numerical model is developed for estimation of sediment transport and sea bed change around it large circular cylinder tinder wave action, The wave model is based on an elliptic mild slope equation. The wave-induced current by the gradient of radiation stress is considered and a depth integrated shallow water equation is applied to the calculation of the current. The mass transport velocity and the bed shear stress due to streaming are considered, which are important factors affecting the sediment transport around a structure due to waves, especially in reflective areas. Wave-current interaction is taken into account in the model for computing the bed shear stress. The model is implemented by it finite element method, The results of this model are compared with those from other methods and agree well with experimental data.展开更多
The model tests are performed with regular waves, and the effect of wave height, wave period, water depth, sediment size and pile diameter is evaluated. The shape and size of local scour around piles are studied. Ther...The model tests are performed with regular waves, and the effect of wave height, wave period, water depth, sediment size and pile diameter is evaluated. The shape and size of local scour around piles are studied. There are three typical scour patterns due to wave action. It is found that a relationship exists between the erosion depth and the wave number. An empirical formula of the maximum local scour is thus derived.展开更多
Based on the mechanism of local scour around vertical large-sized cylinder due to combined action of wave and current,the sour morphology,scour process and the maximum scour depth around the cylinders are studied expe...Based on the mechanism of local scour around vertical large-sized cylinder due to combined action of wave and current,the sour morphology,scour process and the maximum scour depth around the cylinders are studied experimentally.The influence of various ocean environmental parameters on local scour around the cylinder is considered in physical model test.The experimental results indicate that the principal effect factors on the scour in fine-sand seabed are wave height,wavelength,current velocity,ratio of diameter to wavelength and ratio of depth to wavelength when the ratio of cylinder diameter to wavelength is from 0.2 to 0.8.In this paper,dimensional analysis theory is utilized to establish a theoretical equation for forecasting maximum scour depth around large-sized round cylinder base due to the combined action of wave and current.The results computed with the theoretical equation are compared with the experimental results,and found to be in good consistency.The results in this studies can be used to estimate the maximum sour depth around analogous structures.展开更多
基金The present work is financially supported by the National Natural Science Foundation of China (Grant No. 19732040 and No.50025924)
文摘A horizontal two-dimensional numerical model is developed for estimation of sediment transport and sea bed change around it large circular cylinder tinder wave action, The wave model is based on an elliptic mild slope equation. The wave-induced current by the gradient of radiation stress is considered and a depth integrated shallow water equation is applied to the calculation of the current. The mass transport velocity and the bed shear stress due to streaming are considered, which are important factors affecting the sediment transport around a structure due to waves, especially in reflective areas. Wave-current interaction is taken into account in the model for computing the bed shear stress. The model is implemented by it finite element method, The results of this model are compared with those from other methods and agree well with experimental data.
文摘The model tests are performed with regular waves, and the effect of wave height, wave period, water depth, sediment size and pile diameter is evaluated. The shape and size of local scour around piles are studied. There are three typical scour patterns due to wave action. It is found that a relationship exists between the erosion depth and the wave number. An empirical formula of the maximum local scour is thus derived.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50409015)
文摘Based on the mechanism of local scour around vertical large-sized cylinder due to combined action of wave and current,the sour morphology,scour process and the maximum scour depth around the cylinders are studied experimentally.The influence of various ocean environmental parameters on local scour around the cylinder is considered in physical model test.The experimental results indicate that the principal effect factors on the scour in fine-sand seabed are wave height,wavelength,current velocity,ratio of diameter to wavelength and ratio of depth to wavelength when the ratio of cylinder diameter to wavelength is from 0.2 to 0.8.In this paper,dimensional analysis theory is utilized to establish a theoretical equation for forecasting maximum scour depth around large-sized round cylinder base due to the combined action of wave and current.The results computed with the theoretical equation are compared with the experimental results,and found to be in good consistency.The results in this studies can be used to estimate the maximum sour depth around analogous structures.