Deuterium(D_(2)) is one of the important fuel sources that power nuclear fusion reactors. The existing D_(2)/H_(2) separation technologies that obtain high-purity D_(2) are cost-intensive. Recent research has shown th...Deuterium(D_(2)) is one of the important fuel sources that power nuclear fusion reactors. The existing D_(2)/H_(2) separation technologies that obtain high-purity D_(2) are cost-intensive. Recent research has shown that metal-organic frameworks(MOFs) are of good potential for D_(2)/H_(2) separation application. In this work, a high-throughput computational screening of 12020 computation-ready experimental MOFs is carried out to determine the best MOFs for hydrogen isotope separation application. Meanwhile, the detailed structure-performance correlation is systematically investigated with the aid of machine learning. The results indicate that the ideal D_(2)/H_(2) adsorption selectivity calculated based on Henry coefficient is strongly correlated with the 1/ΔAD feature descriptor;that is, inverse of the adsorbility difference of the two adsorbates. Meanwhile, the machine learning(ML) results show that the prediction accuracy of all the four ML methods is significantly improved after the addition of this feature descriptor. In addition, the ML results based on extreme gradient boosting model also revealed that the 1/ΔAD descriptor has the highest relative importance compared to other commonly-used descriptors. To further explore the effect of hydrogen isotope separation in binary mixture, 1548 MOFs with ideal adsorption selectivity greater than 1.5 are simulated at equimolar conditions. The structure-performance relationship shows that high adsorption selectivity MOFs generally have smaller pore size(0.3-0.5 nm) and lower surface area. Among the top 200 performers, the materials mainly have the sql, pcu, cds, hxl, and ins topologies.Finally, three MOFs with high D_(2)/H_(2) selectivity and good D_(2) uptake are identified as the best candidates,of all which had one-dimensional channel pore. The findings obtained in this work may be helpful for the identification of potentially promising candidates for hydrogen isotope separation.展开更多
[Objectives]To study the phosphorus removal performance of phosphate accumulating organisms(PAOs).[Methods]Activated sludge from domestic sewage treatment plant was used as the strain source,and phosphate accumulating...[Objectives]To study the phosphorus removal performance of phosphate accumulating organisms(PAOs).[Methods]Activated sludge from domestic sewage treatment plant was used as the strain source,and phosphate accumulating organisms were screened by plate streaking method and dilution coating plate method.Six kinds of excellent phosphate accumulating organisms were obtained by metachromatic granule staining experiment,total phosphorus experiment and simulated sewage phosphorus removal experiment to assist the observation of bac-terial morphology and experiment of phosphorus removal capacity.In addition,the influencing factors of phosphorus removal capacity(nitrogen source,trace metal ions)were analyzed.[Results]In the case of simulated sewage,the phosphorus removal rate of strain b was the highest,reaching 66.25%,while the phosphorus removal rate of strain e and f was about 10%lower than that of the phosphorus uptake experiment.[Conclusions]This study is expected to provide a theoretical reference for the gradual optimization of the screening method of phosphorus re-moval bacteria in domestic sewage treatment.展开更多
A series of laboratory screening tests have been performed with the objective of evaluating the effect of feed rate, screen length and screen motion on the quality of separation. The separation performance has been ev...A series of laboratory screening tests have been performed with the objective of evaluating the effect of feed rate, screen length and screen motion on the quality of separation. The separation performance has been evaluated by the use of proposed ISO Standard measures which are based on the partition curve.The laboratory rig, the test programme and results derived from it are discussed. The effect of screen length, feed rate and screen motion on the levels of screen performance as indicated by these measures and a normalised separation size parameter are discussed in relation to the assumed screening conditions for the tests reported and conclusions are summarised.展开更多
Vibrating flip-flow screens(VFFS)with stretchable polyurethane sieve mats have been widely used in screening fine-grained materials in recent years.In this work,the discrete element method(DEM)is used to study the scr...Vibrating flip-flow screens(VFFS)with stretchable polyurethane sieve mats have been widely used in screening fine-grained materials in recent years.In this work,the discrete element method(DEM)is used to study the screening process in VFFS to explain particle flow and separation behavior at the particle scale.Unlike traditional vibrating screens,for VFFS,the amplitude response of each point on the elastic sieve mat is different everywhere.This study measures the kinematics of the elastic sieve mat under different conditions such as different stretched lengths and material loads.To establish the elastic sieve mat model in a DEM simulation,the continuous elastic sieve mat is discretized into multiple units,and the displacement signal of each unit tested is analyzed by Fourier series.The Fourier series analysis results of each unit are used as the setting parameters for motion.In this way,the movement of the elastic sieve mat is approximately simulated,and a DEM model of VFFS is produced.Through the simulation,the flow and separation of different-sized particles in VFFS are studied,and the reasonability of the simulation is verified by a pilot-scale screening experiment.The present study demonstrates the potential of the DEM method for the analysis of screening processes in VFFS.展开更多
The discrete element method was utilized to construct three-dimensional discrete element models for the rice mixture,and their motions were analyzed numerically on a planar vibration screening device.The results showe...The discrete element method was utilized to construct three-dimensional discrete element models for the rice mixture,and their motions were analyzed numerically on a planar vibration screening device.The results showed that,after falling onto the vibrating screen surface,the mixture undergoes a reciprocating motion within the same cycle.During the screening process,the mixture undergoes segregation,slides along the screen surface,passes through the screen and then falls.In comparing the movement of grains and shriveled grains,it can be seen that the velocity of shriveled grains experiences cyclical changes,which is consistent with the grains’motion cycle.The impact on grains is shown to be greater than that on shriveled grains,and the average speeds of shriveled grains and grains converge.The curve shows that the screening of repetitive movements has a significant effect on the average velocity of shriveled grains,but also the velocity of shriveled grains and the vibration parameters can be well represented by a fitting equation.It is beneficial for the separation of grains from shriveled grains to choose a greater vibration frequency and screen surface inclination in the range of commonly used.展开更多
To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple...To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple-output(MIMO) systems.The channel mismatch problem can be described as a channel with bounded fluctuant errors due to channel distortion or channel estimation errors.The problem of blind signal separation/extraction with channel mismatch is formulated as a cost function of blind source separation(BSS) subject to the second-order cone constraint,which can be called as second-order cone programing optimization problem.Then the resulting cost function is solved by approximate negentropy maximization using quasi-Newton iterative methods for blind separation/extraction source signals.Theoretical analysis demonstrates that the proposed algorithm has low computational complexity and improved performance advantages.Simulation results verify that the capacity gain and bit error rate(BER) performance of the proposed blind separation method is superior to those of the existing methods in MIMO systems with channel mismatch problem.展开更多
The conceptions of the knowledge screen generated by S-rough sets are given: f- screen and - screen , and then puts forward - filter theorem, - filter theorem of knowledge. At last, the applications of knowledge separ...The conceptions of the knowledge screen generated by S-rough sets are given: f- screen and - screen , and then puts forward - filter theorem, - filter theorem of knowledge. At last, the applications of knowledge separation are given according to - screen and - screen.展开更多
A kind of cone separation theorems is established, by which the extension theorems for cone linear continuous operators are developed. As an application, the extension theorem for positive linear continuous operators ...A kind of cone separation theorems is established, by which the extension theorems for cone linear continuous operators are developed. As an application, the extension theorem for positive linear continuous operators is given.展开更多
It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the ...It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved.展开更多
基金supported by the National Natural Science Foundation of China (22078004)the Research Development Fund from Xi’an Jiaotong-Liverpool University (RDF-16-02-03 and RDF15-01-23)key program special fund (KSF-E-03)。
文摘Deuterium(D_(2)) is one of the important fuel sources that power nuclear fusion reactors. The existing D_(2)/H_(2) separation technologies that obtain high-purity D_(2) are cost-intensive. Recent research has shown that metal-organic frameworks(MOFs) are of good potential for D_(2)/H_(2) separation application. In this work, a high-throughput computational screening of 12020 computation-ready experimental MOFs is carried out to determine the best MOFs for hydrogen isotope separation application. Meanwhile, the detailed structure-performance correlation is systematically investigated with the aid of machine learning. The results indicate that the ideal D_(2)/H_(2) adsorption selectivity calculated based on Henry coefficient is strongly correlated with the 1/ΔAD feature descriptor;that is, inverse of the adsorbility difference of the two adsorbates. Meanwhile, the machine learning(ML) results show that the prediction accuracy of all the four ML methods is significantly improved after the addition of this feature descriptor. In addition, the ML results based on extreme gradient boosting model also revealed that the 1/ΔAD descriptor has the highest relative importance compared to other commonly-used descriptors. To further explore the effect of hydrogen isotope separation in binary mixture, 1548 MOFs with ideal adsorption selectivity greater than 1.5 are simulated at equimolar conditions. The structure-performance relationship shows that high adsorption selectivity MOFs generally have smaller pore size(0.3-0.5 nm) and lower surface area. Among the top 200 performers, the materials mainly have the sql, pcu, cds, hxl, and ins topologies.Finally, three MOFs with high D_(2)/H_(2) selectivity and good D_(2) uptake are identified as the best candidates,of all which had one-dimensional channel pore. The findings obtained in this work may be helpful for the identification of potentially promising candidates for hydrogen isotope separation.
基金Supported by Zhaoqing University Innovation and Entrepreneurship Training Program for College Students(202310580018).
文摘[Objectives]To study the phosphorus removal performance of phosphate accumulating organisms(PAOs).[Methods]Activated sludge from domestic sewage treatment plant was used as the strain source,and phosphate accumulating organisms were screened by plate streaking method and dilution coating plate method.Six kinds of excellent phosphate accumulating organisms were obtained by metachromatic granule staining experiment,total phosphorus experiment and simulated sewage phosphorus removal experiment to assist the observation of bac-terial morphology and experiment of phosphorus removal capacity.In addition,the influencing factors of phosphorus removal capacity(nitrogen source,trace metal ions)were analyzed.[Results]In the case of simulated sewage,the phosphorus removal rate of strain b was the highest,reaching 66.25%,while the phosphorus removal rate of strain e and f was about 10%lower than that of the phosphorus uptake experiment.[Conclusions]This study is expected to provide a theoretical reference for the gradual optimization of the screening method of phosphorus re-moval bacteria in domestic sewage treatment.
文摘A series of laboratory screening tests have been performed with the objective of evaluating the effect of feed rate, screen length and screen motion on the quality of separation. The separation performance has been evaluated by the use of proposed ISO Standard measures which are based on the partition curve.The laboratory rig, the test programme and results derived from it are discussed. The effect of screen length, feed rate and screen motion on the levels of screen performance as indicated by these measures and a normalised separation size parameter are discussed in relation to the assumed screening conditions for the tests reported and conclusions are summarised.
基金supported by the Fundamental Research Funds for the Central Universities (grant No.2021YJSHH32)Anhui Province Major Science and Technology Achievements Engineering Research and Development Special Project (grant No.202103c08020007).
文摘Vibrating flip-flow screens(VFFS)with stretchable polyurethane sieve mats have been widely used in screening fine-grained materials in recent years.In this work,the discrete element method(DEM)is used to study the screening process in VFFS to explain particle flow and separation behavior at the particle scale.Unlike traditional vibrating screens,for VFFS,the amplitude response of each point on the elastic sieve mat is different everywhere.This study measures the kinematics of the elastic sieve mat under different conditions such as different stretched lengths and material loads.To establish the elastic sieve mat model in a DEM simulation,the continuous elastic sieve mat is discretized into multiple units,and the displacement signal of each unit tested is analyzed by Fourier series.The Fourier series analysis results of each unit are used as the setting parameters for motion.In this way,the movement of the elastic sieve mat is approximately simulated,and a DEM model of VFFS is produced.Through the simulation,the flow and separation of different-sized particles in VFFS are studied,and the reasonability of the simulation is verified by a pilot-scale screening experiment.The present study demonstrates the potential of the DEM method for the analysis of screening processes in VFFS.
基金This work was supported by the National Natural Science Foundation of China(51305182)the Ministry of Agriculture Key Laboratory of Modern Agricultural Equipment Grant(201303003).
文摘The discrete element method was utilized to construct three-dimensional discrete element models for the rice mixture,and their motions were analyzed numerically on a planar vibration screening device.The results showed that,after falling onto the vibrating screen surface,the mixture undergoes a reciprocating motion within the same cycle.During the screening process,the mixture undergoes segregation,slides along the screen surface,passes through the screen and then falls.In comparing the movement of grains and shriveled grains,it can be seen that the velocity of shriveled grains experiences cyclical changes,which is consistent with the grains’motion cycle.The impact on grains is shown to be greater than that on shriveled grains,and the average speeds of shriveled grains and grains converge.The curve shows that the screening of repetitive movements has a significant effect on the average velocity of shriveled grains,but also the velocity of shriveled grains and the vibration parameters can be well represented by a fitting equation.It is beneficial for the separation of grains from shriveled grains to choose a greater vibration frequency and screen surface inclination in the range of commonly used.
基金supported by Sichuan Youth Science and Technology Innovation Research Team Project(No.2015TD0022)the Talents Project of Sichuan University of Science and Engineering(No.2017RCL11 and No.2017RCL10)the first batch of science and technology plan key R&D project of Sichuan province(No.2017GZ0068)
文摘To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple-output(MIMO) systems.The channel mismatch problem can be described as a channel with bounded fluctuant errors due to channel distortion or channel estimation errors.The problem of blind signal separation/extraction with channel mismatch is formulated as a cost function of blind source separation(BSS) subject to the second-order cone constraint,which can be called as second-order cone programing optimization problem.Then the resulting cost function is solved by approximate negentropy maximization using quasi-Newton iterative methods for blind separation/extraction source signals.Theoretical analysis demonstrates that the proposed algorithm has low computational complexity and improved performance advantages.Simulation results verify that the capacity gain and bit error rate(BER) performance of the proposed blind separation method is superior to those of the existing methods in MIMO systems with channel mismatch problem.
文摘The conceptions of the knowledge screen generated by S-rough sets are given: f- screen and - screen , and then puts forward - filter theorem, - filter theorem of knowledge. At last, the applications of knowledge separation are given according to - screen and - screen.
文摘A kind of cone separation theorems is established, by which the extension theorems for cone linear continuous operators are developed. As an application, the extension theorem for positive linear continuous operators is given.
基金Project(9140A05030109HK01)supported by Equipment Pre-research Foundation,China
文摘It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved.