The flow process of unplasticized polyvinyl chloride (U PVC) through the mixing zone of intermeshing counter rotating and co rotating twin screw extruders (TSEs) were numerically simula ted by the finite element m...The flow process of unplasticized polyvinyl chloride (U PVC) through the mixing zone of intermeshing counter rotating and co rotating twin screw extruders (TSEs) were numerically simula ted by the finite element method. Three dimensional isothermal flow field of U-PVC in two kinds of TSE was calculated. The mixing performance of the screw elements of the extruders was statistically analyzed by particle tracking method. The dispersive mixing performance was characterized by the mixing index, the logarithm of stretching, and the segregation scale. The distributive mixing per forulance was characterized by the resident time distribution. The results indicate that the counter rotating TSE can build higher pressure and generate higher axial velocity and shear rate, whereas the co rotating TSE has better performance in dispersive and distributive mixing.展开更多
The elastic interaction between a screw dislocation and an elliptical inhomogeneity with interfacial cracks is studied. The screw dislocation may be located outside or inside the inhomogeneity. An efficient complex va...The elastic interaction between a screw dislocation and an elliptical inhomogeneity with interfacial cracks is studied. The screw dislocation may be located outside or inside the inhomogeneity. An efficient complex variable method for the complex multiply connected region is developed, and the general solutions to the problem are derived. As illustrative examples, solutions in explicit series form for complex potentials are presented in the case of one or two interfacial cracks. Image forces on the dislocation are calculated by using the Peach-Koehler formula. The influence of crack geometries and material properties on the image forces is evaluated and discussed. It is shown that the interfacial crack has a significant effect on the equilibrium position of the dislocation near an elliptical-arc interface. The main results indicate, when the length of the crack goes up to a critical value, the presence of the interfacial crack can change the interaction mechanism between a screw dislocation and an elliptical inclusion. The present solutions can include a number of previously known results as special cases.展开更多
The electroelastic interaction of a screw dislocation inside a circular inclusion with inteffacial cracks in piezoelectric composite materials under anti-plane shear and in-plane electric loads at infinity is investig...The electroelastic interaction of a screw dislocation inside a circular inclusion with inteffacial cracks in piezoelectric composite materials under anti-plane shear and in-plane electric loads at infinity is investigated. The general solution to this problem was obtained by means of Riemann-Schwarz' s symmetry principle integrated with analysis of singularities of corresponding complex potentials. As a typical example, closed form expressions of the complex potentials and electroelastic field components in the matrix and inhomogeneity regions were derived explicitly when the interface contains a single crack. The image force acting on the screw dislocation was calculated by using the generalized Peach-Koehler formula. The influence of interfacial crack geometry and piezoelectric material property combinations upon the image force was discussed in detail. The results show that interfacial crack has a significant perturbation effect on the image force and the equilibrium position of the screw dislocation. The presence of the interfacial crack can change the direction of the image force when the length of the crack goes up to a critical value. The obtained explicit solutions can be used as Green's functions to study the problem on the interaction between interfacial cracks and arbitrary shape crack inside the inclusion. The present solutions can lead to previously known results as the special case.展开更多
The problem of the elastic interaction between a screw dislocation and a three-phase circular inclusion with interracial rigid lines (anti-cracks) is investigated. An efficient and concise method for the complex mul...The problem of the elastic interaction between a screw dislocation and a three-phase circular inclusion with interracial rigid lines (anti-cracks) is investigated. An efficient and concise method for the complex multiply connected region is developed, with which explicit series form solutions of the complex potentials in the matrix, and the interphase layer and inclusion regions are derived. Based on the complex potentials, the image force on the screw dislocation is then calculated by using the Peach-Koehler formula. The equilibrium position of the dislocation is discussed in detail for various rigid line geometries, interphase layer thicknesses and material property combinations. The main results show that the interracial rigid lines exert a significant perturbation effect on the motion of the screw dislocation near the circular inclusion surrounded by an interphase layer.展开更多
The treatment of pathologies in the thoracic spine is a challenge. The periodic failure of pedicle screw insertion and anatomical variations make the search for an alternative to pedicle screws in thoracic spine surge...The treatment of pathologies in the thoracic spine is a challenge. The periodic failure of pedicle screw insertion and anatomical variations make the search for an alternative to pedicle screws in thoracic spine surgery necessary. The interlaminar crossed screws is a well-known and secure method for fusion in cervical spine, and in thoracic spine there used to be insufficient clinical data to support this technique, until now. We demonstrate in an initial series of 10 cases treated with interlaminar fusion in association of other fusion techniques in the thoracic spine with good results. Objective: Intralaminar screws have been shown to be a biomechanical salvage technique in the thoracic spine, especially in long cervicothoracic, thoracic and thoracolumbar fixation. The goals of this article are to demonstrate our initial experience and the range of indications for thoracic crossed intralaminar screws. Methods: In this article we describe our initial series performed at São Teotónio Hospital in Viseu, Portugal, and our results, and also provide a comprehensive review of the recent literature in the use of intralaminar crossed fixation.展开更多
This paper deals with the electro-elastic coupling interaction between a piezoelectric screw dislocation which is located inside the elliptical inhomogeneity and an electrically conductive confocal rigid line under re...This paper deals with the electro-elastic coupling interaction between a piezoelectric screw dislocation which is located inside the elliptical inhomogeneity and an electrically conductive confocal rigid line under remote anti-plane shear stresses and in-plane electrical loads in piezoelectric composite material. The analytical-functions of the complex potentials, stress fields and the image force acting on the piezoelectric screw dislocation are obtained based on the principle of conformal mapping, the method of series expansion, the technical of analytic continuation and the analysis of singularity of complex potentials. The rigid line and the piezoelectric material property combinations upon the image force and the equilibrium position of the dislocation are discussed in detail by the numerical computation.展开更多
The interaction of a screw dislocation in the interphase layer with the circular inhomogeneity and matrix was dealt with . An efficient method for multiply connected regions was developed by combining the sectionally ...The interaction of a screw dislocation in the interphase layer with the circular inhomogeneity and matrix was dealt with . An efficient method for multiply connected regions was developed by combining the sectionally subholomorphic function theory, Schwatz symmetric principle and Cauchy integral technique. The Hilbert problem of the complex potentials for three material regions was reduced to a functional equation in the complex potential of the interphase layer, resulting in an explicit series solution . By using the present solution the interaction energy and force acting dislocation were evaluated and discussed.展开更多
基金Supported by the Industrial Foundation(20091041038)
文摘The flow process of unplasticized polyvinyl chloride (U PVC) through the mixing zone of intermeshing counter rotating and co rotating twin screw extruders (TSEs) were numerically simula ted by the finite element method. Three dimensional isothermal flow field of U-PVC in two kinds of TSE was calculated. The mixing performance of the screw elements of the extruders was statistically analyzed by particle tracking method. The dispersive mixing performance was characterized by the mixing index, the logarithm of stretching, and the segregation scale. The distributive mixing per forulance was characterized by the resident time distribution. The results indicate that the counter rotating TSE can build higher pressure and generate higher axial velocity and shear rate, whereas the co rotating TSE has better performance in dispersive and distributive mixing.
基金The project supported by the National Natural Science Foundation of China(10272009 and 10472030)the Natural Science Foundation of Hunan Province(02JJY2014)
文摘The elastic interaction between a screw dislocation and an elliptical inhomogeneity with interfacial cracks is studied. The screw dislocation may be located outside or inside the inhomogeneity. An efficient complex variable method for the complex multiply connected region is developed, and the general solutions to the problem are derived. As illustrative examples, solutions in explicit series form for complex potentials are presented in the case of one or two interfacial cracks. Image forces on the dislocation are calculated by using the Peach-Koehler formula. The influence of crack geometries and material properties on the image forces is evaluated and discussed. It is shown that the interfacial crack has a significant effect on the equilibrium position of the dislocation near an elliptical-arc interface. The main results indicate, when the length of the crack goes up to a critical value, the presence of the interfacial crack can change the interaction mechanism between a screw dislocation and an elliptical inclusion. The present solutions can include a number of previously known results as special cases.
文摘The electroelastic interaction of a screw dislocation inside a circular inclusion with inteffacial cracks in piezoelectric composite materials under anti-plane shear and in-plane electric loads at infinity is investigated. The general solution to this problem was obtained by means of Riemann-Schwarz' s symmetry principle integrated with analysis of singularities of corresponding complex potentials. As a typical example, closed form expressions of the complex potentials and electroelastic field components in the matrix and inhomogeneity regions were derived explicitly when the interface contains a single crack. The image force acting on the screw dislocation was calculated by using the generalized Peach-Koehler formula. The influence of interfacial crack geometry and piezoelectric material property combinations upon the image force was discussed in detail. The results show that interfacial crack has a significant perturbation effect on the image force and the equilibrium position of the screw dislocation. The presence of the interfacial crack can change the direction of the image force when the length of the crack goes up to a critical value. The obtained explicit solutions can be used as Green's functions to study the problem on the interaction between interfacial cracks and arbitrary shape crack inside the inclusion. The present solutions can lead to previously known results as the special case.
基金Project supported by the National Natural Science Foundation of China (No.10472030).
文摘The problem of the elastic interaction between a screw dislocation and a three-phase circular inclusion with interracial rigid lines (anti-cracks) is investigated. An efficient and concise method for the complex multiply connected region is developed, with which explicit series form solutions of the complex potentials in the matrix, and the interphase layer and inclusion regions are derived. Based on the complex potentials, the image force on the screw dislocation is then calculated by using the Peach-Koehler formula. The equilibrium position of the dislocation is discussed in detail for various rigid line geometries, interphase layer thicknesses and material property combinations. The main results show that the interracial rigid lines exert a significant perturbation effect on the motion of the screw dislocation near the circular inclusion surrounded by an interphase layer.
文摘The treatment of pathologies in the thoracic spine is a challenge. The periodic failure of pedicle screw insertion and anatomical variations make the search for an alternative to pedicle screws in thoracic spine surgery necessary. The interlaminar crossed screws is a well-known and secure method for fusion in cervical spine, and in thoracic spine there used to be insufficient clinical data to support this technique, until now. We demonstrate in an initial series of 10 cases treated with interlaminar fusion in association of other fusion techniques in the thoracic spine with good results. Objective: Intralaminar screws have been shown to be a biomechanical salvage technique in the thoracic spine, especially in long cervicothoracic, thoracic and thoracolumbar fixation. The goals of this article are to demonstrate our initial experience and the range of indications for thoracic crossed intralaminar screws. Methods: In this article we describe our initial series performed at São Teotónio Hospital in Viseu, Portugal, and our results, and also provide a comprehensive review of the recent literature in the use of intralaminar crossed fixation.
基金supported by the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (60870005)the National Natural Science Foundation of China (10872065)
文摘This paper deals with the electro-elastic coupling interaction between a piezoelectric screw dislocation which is located inside the elliptical inhomogeneity and an electrically conductive confocal rigid line under remote anti-plane shear stresses and in-plane electrical loads in piezoelectric composite material. The analytical-functions of the complex potentials, stress fields and the image force acting on the piezoelectric screw dislocation are obtained based on the principle of conformal mapping, the method of series expansion, the technical of analytic continuation and the analysis of singularity of complex potentials. The rigid line and the piezoelectric material property combinations upon the image force and the equilibrium position of the dislocation are discussed in detail by the numerical computation.
基金Foundation items: the National Natural Science Foundation of China (10272009) the Science Foundation of Aviation of China (99G51022)
文摘The interaction of a screw dislocation in the interphase layer with the circular inhomogeneity and matrix was dealt with . An efficient method for multiply connected regions was developed by combining the sectionally subholomorphic function theory, Schwatz symmetric principle and Cauchy integral technique. The Hilbert problem of the complex potentials for three material regions was reduced to a functional equation in the complex potential of the interphase layer, resulting in an explicit series solution . By using the present solution the interaction energy and force acting dislocation were evaluated and discussed.