In the South China Sea, sea fog brings severe disasters every year, but forecasters have yet to implement an effective seafog forecast. To address this issue, we test a liquid-water-content-only(LWC-only) operational ...In the South China Sea, sea fog brings severe disasters every year, but forecasters have yet to implement an effective seafog forecast. To address this issue, we test a liquid-water-content-only(LWC-only) operational sea-fog prediction method based on a regional mesoscale numerical model with a horizontal resolution of about 3 km, the Global and Regional Assimilation and Prediction System(GRAPES), hereafter GRAPES-3 km. GRAPES-3 km models the LWC over the sea, from which we infer the visibility that is then used to identify fog. We test the GRAPES-3 km here against measurements in 2016 and 2017 from coastal-station observations, as well as from buoy data, data from the Integrated Observation Platform for Marine Meteorology, and retrieved fog and cloud patterns from Himawari-8 satellite data. For two cases that we examine in detail, the forecast region of sea fog overlaps well with the multi-observational data within 72 h. Considering forecasting for0–24 h, GRAPES-3 km has a 2-year-average equitable threat score(ETS) of 0.20 and a Heidke skill score(HSS) of 0.335,which is about 5.6%(ETS) and 6.4%(HSS) better than our previous method(GRAPES-MOS). Moreover, the stations near the particularly foggy region around the Leizhou Peninsula have relatively high forecast scores compared to other sea areas.Overall, the results show that GRAPES-3 km can roughly predict the formation, evolution, and dissipation of sea fog on the southern China coast.展开更多
基于2020年上半年我国东部近海站点观测资料和葵花-8卫星反演海雾产品对我国自主研发的GRAPES-TYM模式进行了海雾预报性能评估。点、面检验结果表明:模式48 h和72 h TS分别为0.40和0.36,黄海海雾预报性能最优,34°~37°N海域内...基于2020年上半年我国东部近海站点观测资料和葵花-8卫星反演海雾产品对我国自主研发的GRAPES-TYM模式进行了海雾预报性能评估。点、面检验结果表明:模式48 h和72 h TS分别为0.40和0.36,黄海海雾预报性能最优,34°~37°N海域内大部分站点TS高于0.50。黄海海雾落区预报检验显示均压场形势下预报最准确,平均临界成功指数为0.35;气旋后部海雾多空报。2 m相对湿度预报偏差具有局地性特征,相对湿度低估的站海雾预报击中率、TS相对低,反之亦然。另外,模式对成雾相关气象要素预报误差相对小且对成雾有利时海雾预报基本正确;模式预报风向较实际风向偏东南,易出现冷偏差和湿偏差,虚假的有利温湿条件导致海雾空报。展开更多
基金supported jointly by the National Natural Science Foundation of China (Grant Nos. 41675021, 41605006 and 41675019)the Meteorological Sciences Research Project (Grant No. GRMC2017M04)the Innovation Team of Forecasting Technology for Typhoon and Marine Meteorology of the Weather Bureau of Guangdong Province
文摘In the South China Sea, sea fog brings severe disasters every year, but forecasters have yet to implement an effective seafog forecast. To address this issue, we test a liquid-water-content-only(LWC-only) operational sea-fog prediction method based on a regional mesoscale numerical model with a horizontal resolution of about 3 km, the Global and Regional Assimilation and Prediction System(GRAPES), hereafter GRAPES-3 km. GRAPES-3 km models the LWC over the sea, from which we infer the visibility that is then used to identify fog. We test the GRAPES-3 km here against measurements in 2016 and 2017 from coastal-station observations, as well as from buoy data, data from the Integrated Observation Platform for Marine Meteorology, and retrieved fog and cloud patterns from Himawari-8 satellite data. For two cases that we examine in detail, the forecast region of sea fog overlaps well with the multi-observational data within 72 h. Considering forecasting for0–24 h, GRAPES-3 km has a 2-year-average equitable threat score(ETS) of 0.20 and a Heidke skill score(HSS) of 0.335,which is about 5.6%(ETS) and 6.4%(HSS) better than our previous method(GRAPES-MOS). Moreover, the stations near the particularly foggy region around the Leizhou Peninsula have relatively high forecast scores compared to other sea areas.Overall, the results show that GRAPES-3 km can roughly predict the formation, evolution, and dissipation of sea fog on the southern China coast.
文摘基于2020年上半年我国东部近海站点观测资料和葵花-8卫星反演海雾产品对我国自主研发的GRAPES-TYM模式进行了海雾预报性能评估。点、面检验结果表明:模式48 h和72 h TS分别为0.40和0.36,黄海海雾预报性能最优,34°~37°N海域内大部分站点TS高于0.50。黄海海雾落区预报检验显示均压场形势下预报最准确,平均临界成功指数为0.35;气旋后部海雾多空报。2 m相对湿度预报偏差具有局地性特征,相对湿度低估的站海雾预报击中率、TS相对低,反之亦然。另外,模式对成雾相关气象要素预报误差相对小且对成雾有利时海雾预报基本正确;模式预报风向较实际风向偏东南,易出现冷偏差和湿偏差,虚假的有利温湿条件导致海雾空报。