To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simu...To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.展开更多
Several consecutive extreme cold events impacted China during the first half of winter 2020/21,breaking the low-temperature records in many cities.How to make accurate climate predictions of extreme cold events is sti...Several consecutive extreme cold events impacted China during the first half of winter 2020/21,breaking the low-temperature records in many cities.How to make accurate climate predictions of extreme cold events is still an urgent issue.The synergistic effect of the warm Arctic and cold tropical Pacific has been demonstrated to intensify the intrusions of cold air from polar regions into middle-high latitudes,further influencing the cold conditions in China.However,climate models failed to predict these two ocean environments at expected lead times.Most seasonal climate forecasts only predicted the 2020/21 La Niña after the signal had already become apparent and significantly underestimated the observed Arctic sea ice loss in autumn 2020 with a 1-2 month advancement.In this work,the corresponding physical factors that may help improve the accuracy of seasonal climate predictions are further explored.For the 2020/21 La Niña prediction,through sensitivity experiments involving different atmospheric-oceanic initial conditions,the predominant southeasterly wind anomalies over the equatorial Pacific in spring of 2020 are diagnosed to play an irreplaceable role in triggering this cold event.A reasonable inclusion of atmospheric surface winds into the initialization will help the model predict La Niña development from the early spring of 2020.For predicting the Arctic sea ice loss in autumn 2020,an anomalously cyclonic circulation from the central Arctic Ocean predicted by the model,which swept abnormally hot air over Siberia into the Arctic Ocean,is recognized as an important contributor to successfully predicting the minimum Arctic sea ice extent.展开更多
This study revisits the Arctic sea ice extent(SIE) for the extended period of 1979-2015 based on satellite measurements and finds that the Arctic SIE experienced three different periods: a moderate sea ice decline per...This study revisits the Arctic sea ice extent(SIE) for the extended period of 1979-2015 based on satellite measurements and finds that the Arctic SIE experienced three different periods: a moderate sea ice decline period for 1979-1996, an accelerated sea ice decline period from 1997 to 2006, and large interannual variation period after 2007, when Arctic sea ice reached its tipping point reported by Livina and Lenton(2013). To address the response of atmospheric circulation to the lowest sea ice conditions with a large interannual variation, we investigated the dominant modes for large atmospheric circulation responses to the projected 2007 Arctic sea ice loss using an atmospheric general circulation model(ECHAM5). The response was obtained from two 50-yr simulations: one with a repeating seasonal cycle of specified sea ice concentration for the period of 1979-1996 and one with that of sea ice conditions in 2007. The results suggest more occurrences of a negative Arctic Oscillation(AO) response to the 2007 Arctic sea ice conditions, accompanied by an North Atlantic Oscillation(NAO)-type atmospheric circulation response under the largest sea ice loss, and more occurrences of the positive Arctic Dipole(AD) mode under the 2007 sea ice conditions, with an across-Arctic wave train pattern response to the largest sea ice loss in the Arctic. This study offers a new perspective for addressing the response of atmospheric circulation to sea ice changes after the Arctic reached the tipping point in 2007.展开更多
建立了包含27个子系统的前围板SEA(statistical energy analysis)法模型,通过理论计算确定了进行SEA分析所需的基本参数.求解隔声量并与试验结果对比,其吻合良好,验证了SEA法用来计算镁质前围板在高频段隔声量的有效性.根据各个子系统...建立了包含27个子系统的前围板SEA(statistical energy analysis)法模型,通过理论计算确定了进行SEA分析所需的基本参数.求解隔声量并与试验结果对比,其吻合良好,验证了SEA法用来计算镁质前围板在高频段隔声量的有效性.根据各个子系统的声透射曲线可知,在高频段,有必要对前围板整个模型而非局部进行声学优化.据此优化设计了一种复合前围板.为了更加客观地评价其优化效果,提出用降噪效率作为前围板声学优化的一个综合评价指标.通过改变多孔吸声层和空气层的厚度,综合考虑降噪效率、车内空间的限制、轻量化和成本的要求,确定其最优方案的空气层为1,mm,多孔吸声层为10,mm.声学优化后的前围板较优化前隔声量平均提高了20.2,d B,这对工程实际应用具有十分重要的意义.展开更多
This paper is devoted to the study of polarization properties, scattering properties and propagation properties of global positioning system (GPS) scattering signal over the rough sea surface. To investigate the pol...This paper is devoted to the study of polarization properties, scattering properties and propagation properties of global positioning system (GPS) scattering signal over the rough sea surface. To investigate the polarization and the scattering properties, the scattering field and the bistatic scattering coefficient of modified Kirchhoff approximation using the tapered incident wave is derived in detail. In modeling the propagation properties of the GPS scattering signal in the evaporation duct, the initial field of parabolic equation traditionally computed by the antenna pattern using fast Fourier transform (FFT) is replaced by the GPS scattering field. And the propagation properties of the GPS scattering signal in the evaporation duct with different evaporation duct heights and elevation angles of GPS are discussed by the improved discrete mixed Fourier transform taking into account the sea surface roughness.展开更多
As a worldwide authoritative, IPCC forecasted in 1990 that the world- s sea level would most probably rise by 0. 66 m by the end of the 21 st century. Combined with the local depression caused by the sink of the earth...As a worldwide authoritative, IPCC forecasted in 1990 that the world- s sea level would most probably rise by 0. 66 m by the end of the 21 st century. Combined with the local depression caused by the sink of the earth’s crust and the human activity, the relative sea level in the Chanaiiang River mouth will rise by about 1. 0 m during the same peried. Based on this figure, the article forecasted the impacts of sea-level rise on the safety coefficient of coastal structures and civil facilities, loss of wetlands, flood hazard as well as water intrusion. The results show that: 1 ) 40% as large as the present engil1eering mass should be added to the coastal structures in order to maintain the safety coefficient; 2 ) a dynamic loss of 60 km2 of wetlands, as much as 15% of the present total area, would be caused; 3) to hinder the increase inflood hazard dy11amic capacity to drain water must increase by at least 34 times as large as the present; 4) to maintain the present navigation conditions, about 100 million yuan (RMB) is needed to reconstruct over 30(X) bridges and 30 sluices;and 5 ) the disastrous salt water intrusion caused by the sea-level rise could be encountered by the increase in water discharge from the Three Gorge Reservoir in the dry season.展开更多
Observational analyses demonstrate that the Ural persistent positive height anomaly event(PAE) experienced a decadal increase around the year 2000, exhibiting a southward displacement afterward. These decadal variatio...Observational analyses demonstrate that the Ural persistent positive height anomaly event(PAE) experienced a decadal increase around the year 2000, exhibiting a southward displacement afterward. These decadal variations are related to a large-scale circulation shift over the Eurasian Continent. The effects of underlying sea ice and sea surface temperature(SST) anomalies on the Ural PAE and the related atmospheric circulation were explored by Atmospheric Model Intercomparison Project(AMIP) experiments from the Coupled Model Intercomparison Project Phase 6 and by sensitivity experiments using the Atmospheric General Circulation Model(AGCM). The AMIP experiment results suggest that the underlying sea ice and SST anomalies play important roles. The individual contributions of sea ice loss in the Barents-Kara Seas and the SST anomalies linked to the phase transition of the Pacific Decadal Oscillation(PDO) and Atlantic Multidecadal Oscillation(AMO) are further investigated by AGCM sensitivity experiments isolating the respective forcings.The sea ice decline in Barents-Kara Seas triggers an atmospheric wave train over the Eurasian mid-to-high latitudes with positive anomalies over the Urals, favoring the occurrence of Ural PAEs. The shift in the PDO to its negative phase triggers a wave train propagating downstream from the North Pacific. One positive anomaly lobe of the wave train is located over the Ural Mountains and increases the PAE there. The negative-to-positive transition of the AMO phase since the late-1990s causes positive 500-h Pa height anomalies south of the Ural Mountains, which promote a southward shift of Ural PAE.展开更多
The East Asian summer monsoon in Northeast Asia(NEA)has experienced an increase in summer rainfall and a delayed end to the rainy season after 2000,suggesting a trend of enhancement.Based on the data analyses spanning...The East Asian summer monsoon in Northeast Asia(NEA)has experienced an increase in summer rainfall and a delayed end to the rainy season after 2000,suggesting a trend of enhancement.Based on the data analyses spanning 1979-2022,our results show that the increased rainfall amounts are associated with a more pronounced Mongolian cyclone(MC)in July−August,a manifestation of a portion of the Eurasian barotropic Rossby wave train.Sea surface temperature(SST)anomalies in the North Atlantic(NA)regulate this wave train,with SST increases leading to its amplification.Somewhat independently,a delayed end to the rainy season in September is related to an enhanced anticyclone over the Kuril Islands(ACKI)in the Russian Far East.This anticyclone originates in the Arctic region,possibly induced by the loss of sea ice in the East Siberian Sea,a condition that can be detected two months in advance.The stronger MC and ACKI jointly contribute to the observed enhancement in the East Asian summer monsoon in NEA since 2000 by facilitating ascending motion and moisture transport.Therefore,the SST anomaly in the NA,which is responsible for the intensified rainfall in the rainy season in NEA,coupled with the sea ice conditions in the East Siberian Sea,provides a potential prediction source for the retreat of the rainy season.展开更多
基金supported by the Chinese-Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project BASIC (Grant No.325440)the Horizon 2020 project APPLICATE (Grant No.727862)High-performance computing and storage resources were performed on resources provided by Sigma2 - the National Infrastructure for High-Performance Computing and Data Storage in Norway (through projects NS8121K,NN8121K,NN2345K,NS2345K,NS9560K,NS9252K,and NS9034K)。
文摘To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.
基金supported by the Key Research Program of Frontier Sciences,CAS (Grant No. ZDBS-LY-DQC010)the National Natural Science Foundation of China (Grant Nos. 41876012 and 41861144015,42175045)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB42000000).
文摘Several consecutive extreme cold events impacted China during the first half of winter 2020/21,breaking the low-temperature records in many cities.How to make accurate climate predictions of extreme cold events is still an urgent issue.The synergistic effect of the warm Arctic and cold tropical Pacific has been demonstrated to intensify the intrusions of cold air from polar regions into middle-high latitudes,further influencing the cold conditions in China.However,climate models failed to predict these two ocean environments at expected lead times.Most seasonal climate forecasts only predicted the 2020/21 La Niña after the signal had already become apparent and significantly underestimated the observed Arctic sea ice loss in autumn 2020 with a 1-2 month advancement.In this work,the corresponding physical factors that may help improve the accuracy of seasonal climate predictions are further explored.For the 2020/21 La Niña prediction,through sensitivity experiments involving different atmospheric-oceanic initial conditions,the predominant southeasterly wind anomalies over the equatorial Pacific in spring of 2020 are diagnosed to play an irreplaceable role in triggering this cold event.A reasonable inclusion of atmospheric surface winds into the initialization will help the model predict La Niña development from the early spring of 2020.For predicting the Arctic sea ice loss in autumn 2020,an anomalously cyclonic circulation from the central Arctic Ocean predicted by the model,which swept abnormally hot air over Siberia into the Arctic Ocean,is recognized as an important contributor to successfully predicting the minimum Arctic sea ice extent.
基金supported by the Global Change Research Program of China (No. 2015CB953904)the National Natural Science Foundation of China (Nos. 41575067, 41605037)
文摘This study revisits the Arctic sea ice extent(SIE) for the extended period of 1979-2015 based on satellite measurements and finds that the Arctic SIE experienced three different periods: a moderate sea ice decline period for 1979-1996, an accelerated sea ice decline period from 1997 to 2006, and large interannual variation period after 2007, when Arctic sea ice reached its tipping point reported by Livina and Lenton(2013). To address the response of atmospheric circulation to the lowest sea ice conditions with a large interannual variation, we investigated the dominant modes for large atmospheric circulation responses to the projected 2007 Arctic sea ice loss using an atmospheric general circulation model(ECHAM5). The response was obtained from two 50-yr simulations: one with a repeating seasonal cycle of specified sea ice concentration for the period of 1979-1996 and one with that of sea ice conditions in 2007. The results suggest more occurrences of a negative Arctic Oscillation(AO) response to the 2007 Arctic sea ice conditions, accompanied by an North Atlantic Oscillation(NAO)-type atmospheric circulation response under the largest sea ice loss, and more occurrences of the positive Arctic Dipole(AD) mode under the 2007 sea ice conditions, with an across-Arctic wave train pattern response to the largest sea ice loss in the Arctic. This study offers a new perspective for addressing the response of atmospheric circulation to sea ice changes after the Arctic reached the tipping point in 2007.
文摘建立了包含27个子系统的前围板SEA(statistical energy analysis)法模型,通过理论计算确定了进行SEA分析所需的基本参数.求解隔声量并与试验结果对比,其吻合良好,验证了SEA法用来计算镁质前围板在高频段隔声量的有效性.根据各个子系统的声透射曲线可知,在高频段,有必要对前围板整个模型而非局部进行声学优化.据此优化设计了一种复合前围板.为了更加客观地评价其优化效果,提出用降噪效率作为前围板声学优化的一个综合评价指标.通过改变多孔吸声层和空气层的厚度,综合考虑降噪效率、车内空间的限制、轻量化和成本的要求,确定其最优方案的空气层为1,mm,多孔吸声层为10,mm.声学优化后的前围板较优化前隔声量平均提高了20.2,d B,这对工程实际应用具有十分重要的意义.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971067)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20070701010)
文摘This paper is devoted to the study of polarization properties, scattering properties and propagation properties of global positioning system (GPS) scattering signal over the rough sea surface. To investigate the polarization and the scattering properties, the scattering field and the bistatic scattering coefficient of modified Kirchhoff approximation using the tapered incident wave is derived in detail. In modeling the propagation properties of the GPS scattering signal in the evaporation duct, the initial field of parabolic equation traditionally computed by the antenna pattern using fast Fourier transform (FFT) is replaced by the GPS scattering field. And the propagation properties of the GPS scattering signal in the evaporation duct with different evaporation duct heights and elevation angles of GPS are discussed by the improved discrete mixed Fourier transform taking into account the sea surface roughness.
文摘As a worldwide authoritative, IPCC forecasted in 1990 that the world- s sea level would most probably rise by 0. 66 m by the end of the 21 st century. Combined with the local depression caused by the sink of the earth’s crust and the human activity, the relative sea level in the Chanaiiang River mouth will rise by about 1. 0 m during the same peried. Based on this figure, the article forecasted the impacts of sea-level rise on the safety coefficient of coastal structures and civil facilities, loss of wetlands, flood hazard as well as water intrusion. The results show that: 1 ) 40% as large as the present engil1eering mass should be added to the coastal structures in order to maintain the safety coefficient; 2 ) a dynamic loss of 60 km2 of wetlands, as much as 15% of the present total area, would be caused; 3) to hinder the increase inflood hazard dy11amic capacity to drain water must increase by at least 34 times as large as the present; 4) to maintain the present navigation conditions, about 100 million yuan (RMB) is needed to reconstruct over 30(X) bridges and 30 sluices;and 5 ) the disastrous salt water intrusion caused by the sea-level rise could be encountered by the increase in water discharge from the Three Gorge Reservoir in the dry season.
基金jointly supported by the National Key Research and Development Program of China (Grant No.2018YFA0606403)the National Natural Science Foundation of China (Grant No.41790473)the Beijing Natural Science Foundation (8234068)。
文摘Observational analyses demonstrate that the Ural persistent positive height anomaly event(PAE) experienced a decadal increase around the year 2000, exhibiting a southward displacement afterward. These decadal variations are related to a large-scale circulation shift over the Eurasian Continent. The effects of underlying sea ice and sea surface temperature(SST) anomalies on the Ural PAE and the related atmospheric circulation were explored by Atmospheric Model Intercomparison Project(AMIP) experiments from the Coupled Model Intercomparison Project Phase 6 and by sensitivity experiments using the Atmospheric General Circulation Model(AGCM). The AMIP experiment results suggest that the underlying sea ice and SST anomalies play important roles. The individual contributions of sea ice loss in the Barents-Kara Seas and the SST anomalies linked to the phase transition of the Pacific Decadal Oscillation(PDO) and Atlantic Multidecadal Oscillation(AMO) are further investigated by AGCM sensitivity experiments isolating the respective forcings.The sea ice decline in Barents-Kara Seas triggers an atmospheric wave train over the Eurasian mid-to-high latitudes with positive anomalies over the Urals, favoring the occurrence of Ural PAEs. The shift in the PDO to its negative phase triggers a wave train propagating downstream from the North Pacific. One positive anomaly lobe of the wave train is located over the Ural Mountains and increases the PAE there. The negative-to-positive transition of the AMO phase since the late-1990s causes positive 500-h Pa height anomalies south of the Ural Mountains, which promote a southward shift of Ural PAE.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.U2242205,41830969)the S&T Development Fund of CAMS(2022KJ008)the Basic Scientific Research and Operation Foundation of CAMS(2021Z004).
文摘The East Asian summer monsoon in Northeast Asia(NEA)has experienced an increase in summer rainfall and a delayed end to the rainy season after 2000,suggesting a trend of enhancement.Based on the data analyses spanning 1979-2022,our results show that the increased rainfall amounts are associated with a more pronounced Mongolian cyclone(MC)in July−August,a manifestation of a portion of the Eurasian barotropic Rossby wave train.Sea surface temperature(SST)anomalies in the North Atlantic(NA)regulate this wave train,with SST increases leading to its amplification.Somewhat independently,a delayed end to the rainy season in September is related to an enhanced anticyclone over the Kuril Islands(ACKI)in the Russian Far East.This anticyclone originates in the Arctic region,possibly induced by the loss of sea ice in the East Siberian Sea,a condition that can be detected two months in advance.The stronger MC and ACKI jointly contribute to the observed enhancement in the East Asian summer monsoon in NEA since 2000 by facilitating ascending motion and moisture transport.Therefore,the SST anomaly in the NA,which is responsible for the intensified rainfall in the rainy season in NEA,coupled with the sea ice conditions in the East Siberian Sea,provides a potential prediction source for the retreat of the rainy season.