The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated...The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated against the products from Haiyang-2B(HY-2B)in 2021,obtaining a root mean squared error(RMSE)of 0.45 with a correlation of 0.96 and scatter index of 0.18.The wave-induced effects,i.e.,wave breaking and mixing induced by nonbearing waves resulting in changes in radiation stress and Stokes drift,were calculated from WW3,ERA-5 wind,SST,and salinity data from the National Centers for Environmental Prediction and were taken as forcing fields in the Stony Brook Parallel Ocean Model.The results showed that an RMSE of 0.81℃ with wave-induced effects was less than the RMSE of 1.11℃ achieved without the wave term compared with the simulated SST with the measurements from Argos.Considering the four wave effects and sea ice freezing,the SST in the Arctic Ocean decreased by up to 1℃ in winter.Regression analysis revealed that the SWH was linear in SST(values without subtraction of waves)in summer and autumn,but this behavior was not observed in spring or winter due to the presence of sea ice.The interannual variation also presented a negative relationship between the difference in SST and SWH.展开更多
Based on the precipitation data of Meiyu at 37 stations in the valleys of Yangtze and Huaihe Rivers from 1954 to 2001, the temporal-spatial characteristics of Meiyu precipitation and their relationships with the sea s...Based on the precipitation data of Meiyu at 37 stations in the valleys of Yangtze and Huaihe Rivers from 1954 to 2001, the temporal-spatial characteristics of Meiyu precipitation and their relationships with the sea surface temperature in northern Pacific are investigated using such methods as harmonic analysis, empirical orthogonal ftmction (EOF), composite analysis and singular value decomposition (SVD). The results show that the temporal evolution and spatial distribution of Meiyu precipitation are not homogeneous in the Yangtze-Huaihe Rivers basins but with prominent inter-annual and inter-decadal variabilities. The key region between the anomalies of Meiyu precipitation and the monthly sea surface temperature anomalies (SSTA) lies in the west wind drift of North Pacific, which influences the precipitation anomaly of Meiyu precipitation over a key period of time from January to March in the same year. When the SST in the North Pacific west wind drift is warmer (colder) than average during these months, Meiyu precipitation anomalously increases (decreases) in the concurrent year. Results of SVD are consistent with those of composite analysis which pass the significance test of Monte-Carlo at 0.05.展开更多
The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the...The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the people and the socio-economic development of the area. By using precipitation data and sea surface temperature data, this study reveals the spatial and temporal variation patterns of extreme precipitation during the East African short rainy season. Key findings include significant rainfall variability, with Tanzania experiencing the highest amounts in December due to the southward shift of the Intertropical Convergence Zone (ITCZ), while other regions receive less than 100 mm. Extreme rainfall events (90th percentiles) are evenly distributed, averaging 2 to 10 days annually. Historical data shows maximum seasonal rainfall often peaks at 15 mm, with frequent occurrences of daily rainfall exceeding 10 mm during OND. Additionally, a positive correlation (0.48) between OND precipitation extremes and Indian Ocean Dipole (IOD) anomalies is statistically significant. These findings highlight the climatic variability and potential trends in extreme rainfall events in East Africa, providing valuable insights for regional climate adaptation strategies.展开更多
The difference is examined in atmospheric circulation and Sea Surface Temperatures (SSTs) in the trop-ics and subtropics between weak and strong convection over the tropical western Pacific warm pool (signified as WPW...The difference is examined in atmospheric circulation and Sea Surface Temperatures (SSTs) in the trop-ics and subtropics between weak and strong convection over the tropical western Pacific warm pool (signified as WPWP). The WPWP is chosen as the region (110–160°E, 10–20°N), where the Outgoing Longwave Radiation (OLR) shows a great year-to-year variance. A composite study was carried out to examine the differences in atmospheric circulation and SSTs between weak and strong convection over WPWP. First, NCEP/NCAR re-analysis data and satellite-observed OLR data are used to examine the differences. ERA data, in which the OLR data are calculated, are then used for re-examination. The composite results show that the differences are remarkably similar in these two sets of data. The difference in circulations between weak and strong convection over WPWP is significantly associated with westward extension of the North Pacific subtropical anticyclone and stronger westerlies at the northwestern edge of the subtropical anticyclone. It also corresponds with the significant easterly anomaly and the descent anomaly in situ, i.e., over the WPWP. The most prominent characteristics of the difference of SSTs between weak and strong convection over the WPWP are the significant positive SST anomalies in the Indian Ocean, the Bay of Bengal and the South China Sea. In WPWP, however, there are only weak negative SST anomalies. Thus, the anomaly of OLR over WPWP is weakly associated with the SST anomalies in situ, while closely associated with the SST anomalies west of WPWP. Key words Convection over the western Pacific warm pool - Northwest Pacific subtropical high - Sea surface temperatures This study was supported by the “ National Key Programme for Developing Basic Sciences” G1998040900 Part 1.展开更多
In the Northwest Pacific Ocean, the squid jigging fisheries from China, Japan and other countries and regions have targeted the west winter-spring cohort of neon flying squid(Ommastrephes bartramii) from August to N...In the Northwest Pacific Ocean, the squid jigging fisheries from China, Japan and other countries and regions have targeted the west winter-spring cohort of neon flying squid(Ommastrephes bartramii) from August to November since the 1970 s. This squid is a short-lived ecological opportunist with a life-span of about one year,and its population is labile and recruitment variability is driven by the environment or climate change. This variability provides a challenge for ones to forecast the key habitats affected by climate change. The catch data of O. bartramii from Chinese squid jigging fishery and the satellite-derived sea surface temperature(SST) data are used in the Northwest Pacific Ocean from August to November of 1998 to 2004, the SST preferences of O.bartramii corresponding to high values of catch per fishing day(CPUE) are determined and monthly potential habitats are predicted using a histogram analysis of the SST data. The possible changes in the potential habitats of O. bartramii in the Northwest Pacific Ocean are estimated under four climate change scenarios based on the Fourth Assessment Report(AR4) of the Intergovernmental Panel on Climate Change, i.e., 0.5, 1, 2 and 4°C increases in the SST because of the climate change. The results reveal an obvious poleward shift of the potential habitats of O. bartramii in the Northwest Pacific Ocean.展开更多
Using the monthly summer (June to August) precipitation data over China from 1979 to 1998,and the SST data in Indian Ocean of the overlapping periods,we have analyzed the spatial patterns as well as their temporal evo...Using the monthly summer (June to August) precipitation data over China from 1979 to 1998,and the SST data in Indian Ocean of the overlapping periods,we have analyzed the spatial patterns as well as their temporal evolution of the summer precipitation,along with the relationships between the precipitation over China and the SST in Indian Ocean,with the EOF and SVD methods respectively.The important results are:several canonical anomalous summer precipitation patterns have been identified.The summer SST in Indian Ocean is positively correlated with the simultaneous precipitation in the Yangtze River and Huai River Basin,while negatively with that in other parts of China.展开更多
With the singular value decomposition (SVD), correlation analysis has been conducted between the Pacific Ocean sea surface temperature (SST) and northwestern China precipitation over March May (MAM). The result shows ...With the singular value decomposition (SVD), correlation analysis has been conducted between the Pacific Ocean sea surface temperature (SST) and northwestern China precipitation over March May (MAM). The result shows that there is good relationship between the North Pacific and spring precipitation in northwestern China. When the SST is of the peak El Ni駉 phase, precipitation is less over this part of the country except for the Qinghai-Tibetan Plateau; when the SST for the months DJF is of the mature El Ni駉 phase, precipitation is more over the region in the subsequent March May; when the North Pacific SST for DJF is of the La Ni馻 pattern, precipitation is less over the plateau in the subsequent March May. For the Pacific SST, the westerly drift, kuroshio current, Californian current and north equatorial current are all significantly correlating with the March May precipitation in northwestern China. Specifically, the SST in DJF over the kuroshio current region is out of phase with the precipitation in northern Xinjiang, i.e. when the former is low, the latter is more. In northwestern China, regions in which March May precipitation response to the variation of SST in the Pacific Ocean are northern Xinjiang, the Qinghai-Tibetan Plateau and areas off its northeastern part, the desert basin and western part of the Corridor of the Great Bend of Yellow River valley (Corridor).展开更多
A Hybrid Coordinate Ocean Model (HYCOM) is used to simulate the sea surface temperature of the Tropical and North Pacific. Based on the different combinations of two air-Sea flux data sets (COADS and ECMWF) and tw...A Hybrid Coordinate Ocean Model (HYCOM) is used to simulate the sea surface temperature of the Tropical and North Pacific. Based on the different combinations of two air-Sea flux data sets (COADS and ECMWF) and two bulk parameter formulas (non-constant and constant), four numerical experiments are carried out. The following conclusions can be deduced from the numerical results. (1) The numerical results using non-constant bulk parameter formula are much better than those using constant one. In the Pacific area from 40°N to 20°S, the annual average SST obtained from the experiment using non-constant bulk parameter formula is 0.21 ℃ higher than that from the satellite-based SST climatology (the pathfinder data). However, the difference is 0.63 ℃ for the experiment when the using constant one. (2) HYCOM successfully simulates the monthly variation of climatological SST in tropical and north Pacific basins and monthly spatial variation of Western Pacific Warm Pool. Especially in the Pacific area from 40°N to 20°S, the difference of the seasonal averaged SST between pathfinder data and the result of experiment 2 (using COADS data set and non-constant bulk parameter formula) is only about 0.02 ℃. (3)The simulation results using different Air-Sea flux data are different and the difference is very large in some regions. In the northwest of the model region, the annual average SST obtained from experiment 2 (using COADS data set) is 1℃ higher than that obtained from experiment 4 (using ECMWF data set). Contrarily, the result of experiment 4 is 1 ℃ larger than that of experiment 2 in the southeast of the model region. The largest difference is about 4 ℃ occurred near the area of 58°N, 140°E and the Bohai sea.展开更多
The National Oceanic and Atmospheric Administration(NOAA)Polar Orbiting Environmental Satellites(POES)High Resolution Picture Transmission(HRPT)data in the Northwest Pacific Ocean has been acquired through the SeaSpac...The National Oceanic and Atmospheric Administration(NOAA)Polar Orbiting Environmental Satellites(POES)High Resolution Picture Transmission(HRPT)data in the Northwest Pacific Ocean has been acquired through the SeaSpace ground station located at the Ocean University of China since October 2000,and these data have been processed by the TeraScan system.The sea surface temperature(SST)products in the Northwest Pacific Ocean derived from Advanced Very High Resolution Radiometer(AVHRR)are evaluated.We compared the SST products with the buoy SSTs during the stable operational period of each satellite.There are a total of 33715 and 71819 matchups acquired for daytime and nighttime,respectively,between the NOAA/AVHRR SSTs and buoy SSTs.For each satellite,the biases and standard deviations at daytime are smaller than those at nighttime.The monthly biases at daytime generally oscillate around 0℃,except for NOAA-15.By contrast,the monthly biases at nighttime mostly oscillate around−0.5℃.Both daytime and nighttime biases exhibit seasonal oscillations for all satellites.The seasonal biases of the SST difference at daytime between each satellite and buoy are mostly within±0.25℃,except for the negative bias of−0.58℃in May for NOAA-18.The seasonal biases of the SST difference at nighttime are mostly around−0.5℃,and NOAA-16 has a lower bias,i.e.,−0.86℃,in April.These results indicate that the accuracy of the SST products is inconsistent for each satellite during different periods.It is suggested that the NOAA/AVHRR data should be reprocessed to provide highly accurate SST products.展开更多
Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surfa...Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surface temperature(SST),sea surface salinity(SSS),mixed layer depth(MLD),and euphotic zone depth(EZD) in the northern B ay of Bengal(BoB) during three monsoon seasons were examined in this study based on remote sensing data for the period 2005 to 2020.To compare the NPP distribution between the coastal zones and open BoB,the study area was divided into five zones(Z1-Z5).Results suggest that most productive zones Z2 and Zl are located at the head bay area and are directly influenced by freshwater discharge together with riverine sediment and nutrient loads.Across Z1-Z5,the NPP ranges from 5 315.38 mg/(m^(2)·d) to 346.7 mg/(m^(2)·d)(carbon,since then the same).The highest monthly average NPP of 5 315.38 mg/(m^(2)·d) in February and 5 039.36 mg/(m^(2)·d) in June were observed from Z2,while the lowest monthly average of 346.72 mg/(m^(2)·d) was observed in March from Z4,which is an oceanic zone.EZD values vary from 6-154 m for the study area,and it has an inverse correlation with NPP concentration.EZD is deeper during the summer season and shallower during the wintertime,with a corresponding increase in productivity.Throughout the year,monthly SST shows slight fluctuation for the entire study area,and statistical analysis shows a significant correlation among NPP,and EZD,overall positive between NPP and MLD,whereas no significant correlation among SSS,and SST for the northern BoB.Long-term trends in SST and productivity were significantly po sitive in head bay zones but negatively productive in the open ocean.The findings in this study on the distribution of NPP,SST,SSS,MLD,and EZD and their seasonal variability in five different zones of BoB can be used to further improve the management of marine resources and overall environmental condition in response to climate changes in BoB as they are of utmost relevance to the fisheries for the three bordering countries.展开更多
Previous studies have shown that meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) dominates interannual variability of the EAJS in the summer months.This study investigates the tropical P...Previous studies have shown that meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) dominates interannual variability of the EAJS in the summer months.This study investigates the tropical Pacific sea surface temperature (SST) anomalies associated with meridional displacement of the monthly EAJS during the summer.The meridional displacement of the EAJS in June is significantly associated with the tropical central Pacific SST anomaly in the winter of previous years,while displacements in July and August are related to tropical eastern Pacific SST anomalies in the late spring and concurrent summer.The EAJS tends to shift southward in the following June (July and August) corresponding to a warm SST anomaly in the central (eastern) Pacific in the winter (late spring-summer).The westerly anomaly south of the Asian jet stream is a result of tropical central Pacific warm SST anomaly-related warming in the tropical troposphere,which is proposed as a possible reason for southward displacement of the EAJS in June.The late spring-summer warm SST anomaly in the tropical eastern Pacific,however,may be linked to southward displacement of the EAJS in July and August through a meridional teleconnection over the western North Pacific (WNP) and East Asia.展开更多
By adopting characteristic index data for the Western Pacific Subtropical High(WPSH) from the National Climate Center of China, U.S. National Centers for Environmental Prediction-National Center for Atmospheric Resear...By adopting characteristic index data for the Western Pacific Subtropical High(WPSH) from the National Climate Center of China, U.S. National Centers for Environmental Prediction-National Center for Atmospheric Research(NCEP/NCAR) reanalysis data, and the National Oceanic and Atmospheric Administration(NOAA) sea surface temperature(SST) data, we studied the WPSH variability considering the background of climate warming by using a Gaussian filter, moving averages, correlation analysis, and synthetic analysis. Our results show that with climate warming over the past 60 years, significant changes in the WPSH include its enlarged area, strengthened intensity,westward extended ridge point and southward expanded southern boundary, as well as enhanced interannual fluctuations in all these indices. The western ridge point of the WPSH consistently varies with temperature changes in the Northern Hemisphere, but the location of the ridgeline varies independently. The intensity and area of the WPSH were both significantly increased in the late 1980 s. Specifically, the western ridge point started to significantly extend westward in the early 1990 s, and the associated interannual variability had a significant increase in the late 1990 s; in addition, the ridgeline was swaying along the north-south-north direction, and the corresponding variability was also greatly enhanced in the late 1990 s. With climate warming, the SST increase becomes more weakly correlated with the WPSH intensity enhancement but more strongly correlated with the westward extension of the ridge point in the equatorial central and eastern Pacific Ocean in winter, corresponding to an expanding WPSH in space. In the northern Pacific in winter, the SST decrease has a weaker correlation with the southerly location of the ridgeline but also a stronger correlation with the westward extension of the ridge point. In the tropical western Pacific in winter, the correlations of the SST decrease with the WPSH intensity enhancement, and the westward extension of the ridge point is strengthened. These observations can be explained by strengthened Hadley circulations, the dominant effects of the southward shift, and additional effects of the weakened ascending branch of the Walker circulation during warm climatological periods,which consequently lead to strengthened intensities, increased areas, and southward expansions of the WPSH in summer.展开更多
Changes in sea surface temperature (SST), seawater oxygen isotope (δ18Osw), and local salinity proxy (δ18Osw-ss ) in the past 155 ka were studied using a sediment core (MD06-3052) from the northern edge of t...Changes in sea surface temperature (SST), seawater oxygen isotope (δ18Osw), and local salinity proxy (δ18Osw-ss ) in the past 155 ka were studied using a sediment core (MD06-3052) from the northern edge of the western Pacific Warm Pool (WPWP), within the flow path of the bifurcation of the North Equatorial Current. Our records reveal a lead-lag relationship between paired Mg/Ca-SST and δ18O during Termination II and the last interglacial period. Similarity in SST between our site and the Antarctic temperature proxy and in CO2 profile showed a close connection between the WPWP and the Antarctic. Values of 818Osw exhibited very similar variations to those of mean ocean δ18Osw, owing to the past sea-level changes on glacial-interglacial timescale. Calculated values of δ18O reflect a more saline condition during high local summer insolation (SI) periods. Such correspondence between δ18O and local SI in the WPWP may reflect complex interaction between ENSO and monsoon, which was stimulated by changes in solar irradiance and their influence on the local hydrologic cycle. This then caused a striking reorganization of atmospheric circulation over the WPWP.展开更多
Large-scale water transport is one of the key factors that affect sea surface temperature anomaly(SSTA) in the eastern equatorial Pacific(EEP).The relationship between the wave transport in the tropical Pacific an...Large-scale water transport is one of the key factors that affect sea surface temperature anomaly(SSTA) in the eastern equatorial Pacific(EEP).The relationship between the wave transport in the tropical Pacific and the SSTA in the EEP is examined by different methods,including band-pass filtering,period analysis,correlation analysis,significant analysis,and empirical orthogonal function(EOF) analysis.We have found that the eastward shift of the wave transport anomaly in the tropical Pacific,with a period of 2 a and enhancing the transport of warm waters from the western Pacific warm pool,precedes the increase of sea surface temperature(SST) in the EEP.The wave transport and the SSTA in the EEP have a maximum correlation of 0.65 with a time-lag of 6 months(transport variation precedes the temperature).The major periods(3.7 a and 2.45 a) of the wave transport variability,as revealed by the EOF analysis,appear to be consistent with the SSTA oscillation cycle in the EEP.Based on the first occurrence of a significant SSTA in the Ni?o 3 region(5°S–5°N,90°–150°W),two types of warm events are defined.The wave transport anomalies in two types present predominantly the west anomaly in the tropical Pacific,it is that the wave transport continues transport warm water from west to east before the onset of the warm event.The impact of wave-induced water transport on the SSTA in the EEP is confirmed by the heat flux of the wave transport.The wave transport exerts significant effect on the SSTA variability in the EEP and thus is not neglectable in the further studies.展开更多
The responses of Sea Surface Temperature(SST) to greenhouse gas(GHG) and anthropogenic aerosol in the North Pa- cific are compared based on the historical single and all-forcing simulations with Geophysical Fluid Dyna...The responses of Sea Surface Temperature(SST) to greenhouse gas(GHG) and anthropogenic aerosol in the North Pa- cific are compared based on the historical single and all-forcing simulations with Geophysical Fluid Dynamics Laboratory Climate Model version 3(GFDL CM3). During 1860–2005, the effect of GHG forcing on the North Pacific SST is opposite to that of the aerosol forcing. Specifically, the aerosol cooling effect exceeds the GHG warming effect in the Kuroshio Extension(KE) region dur- ing 1950–2004 in the CM3 single forcing. The mid-latitude response of ocean circulation to the GHG(aerosol) forcing is to enhance(weaken) the Subtropical Gyre. Then the SST warming(cooling) lies on the zonal band of 40?N because of the increased(reduced) KE warm advection effect in the GHG(aerosol) forcing simulations, and the cooling effect to SST will surpass the warming effect in the KE region in the historical all-forcing simulations. Besides, the positive feedback between cold SST and cloud can also strengthen the aerosol cooling effect in the KE region during boreal summer, when the mixed layer depth is shallow. In the GHG(aerosol) forcing simulations, corresponding to warming(cooling) SST in the KE region, the weakened(enhanced) Aleutian Low appears in the Northeast Pacific. Consequently, the SST responses to all-forcing in the historical simulations are similar to the re- sponses to aerosol forcing in sign and spatial pattern, hence the aerosol effect is quite important to the SST cooling in the mid-latitude North Pacific during the past 55 years.展开更多
The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NC...The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months.展开更多
This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific S...This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific SST.The principal component 1(PC1)of the first leading mode is obtained by empirical orthogonal function decomposition.Reanalysis data,numerical experiments,and CMIP5 model outputs all suggest that the PC1 events(positive-minus-negative PC1 events),located relatively northward(i.e.,North PC1 events),more easily weaken the Arctic SPV compared to the PC1 events located relatively southward(i.e.,South PC1 events).The analysis indicates that the North PC1-related Aleutian low anomaly is located over the northern North Pacific and thus enhances the climatological trough,which strengthens the planetary-scale wave 1 at mid-to-high latitudes and thereby weakens the SPV.The weakened stratospheric circulation further extends into the troposphere and favors negative surface temperature anomalies over Eurasia.By contrast,the South PC1-related Aleutian low anomaly is located relatively southward,and its constructive interference with the climatological trough is less efficient at high latitudes.Thus,the South PC1 events could not induce an evident enhancement of the planetary-scale waves at high latitudes and thereby a weakening of the SPV on average.The Eurasian cooling associated with South PC1 events(positive-minus-negative PC1 events)is also not prominent.The results of this study suggest that the meridional positions of the PC1 events may be useful for predicting the Arctic SPV and Eurasian surface temperature variations.展开更多
Mean seasonal surface temperatures of the North Pacific are illustrated in three maps. Twenty nine years of ship-injection temperatures are used for the whole North Pacific (north of 20?N). Map number two shows geogra...Mean seasonal surface temperatures of the North Pacific are illustrated in three maps. Twenty nine years of ship-injection temperatures are used for the whole North Pacific (north of 20?N). Map number two shows geographical regions of the month of highest sea surface temperature. There are two broad bands in the central and eastern basin, trending northeast/southwest, such that the September band lies east of the August band along a given latitude line. Map three depicts regions of the lowest monthly mean temperatures. March is the most common month, but in the middle of the ocean is a band of Februarys trending northeast/southwest. These features on maps two and three are interpreted in terms of the newly proposed wide warm surface current and its seasonal variations, mainly in horizontal position, flowing northeastward off California. It has not been found possible to compare maps two and three with the results from any earlier work. Map one shows the mean seasonal range of surface temperature, which has a character similar to maps going all the way back to the late 1800s, but is based on considerably more data.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42076238 and 42376174)the Natural Science Foundation of Shanghai(No.23ZR1426900).
文摘The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated against the products from Haiyang-2B(HY-2B)in 2021,obtaining a root mean squared error(RMSE)of 0.45 with a correlation of 0.96 and scatter index of 0.18.The wave-induced effects,i.e.,wave breaking and mixing induced by nonbearing waves resulting in changes in radiation stress and Stokes drift,were calculated from WW3,ERA-5 wind,SST,and salinity data from the National Centers for Environmental Prediction and were taken as forcing fields in the Stony Brook Parallel Ocean Model.The results showed that an RMSE of 0.81℃ with wave-induced effects was less than the RMSE of 1.11℃ achieved without the wave term compared with the simulated SST with the measurements from Argos.Considering the four wave effects and sea ice freezing,the SST in the Arctic Ocean decreased by up to 1℃ in winter.Regression analysis revealed that the SWH was linear in SST(values without subtraction of waves)in summer and autumn,but this behavior was not observed in spring or winter due to the presence of sea ice.The interannual variation also presented a negative relationship between the difference in SST and SWH.
基金Key National Project for Fundamental Research Project 973 (2004CB418300)Natural Science Foundation of China (40233037)
文摘Based on the precipitation data of Meiyu at 37 stations in the valleys of Yangtze and Huaihe Rivers from 1954 to 2001, the temporal-spatial characteristics of Meiyu precipitation and their relationships with the sea surface temperature in northern Pacific are investigated using such methods as harmonic analysis, empirical orthogonal ftmction (EOF), composite analysis and singular value decomposition (SVD). The results show that the temporal evolution and spatial distribution of Meiyu precipitation are not homogeneous in the Yangtze-Huaihe Rivers basins but with prominent inter-annual and inter-decadal variabilities. The key region between the anomalies of Meiyu precipitation and the monthly sea surface temperature anomalies (SSTA) lies in the west wind drift of North Pacific, which influences the precipitation anomaly of Meiyu precipitation over a key period of time from January to March in the same year. When the SST in the North Pacific west wind drift is warmer (colder) than average during these months, Meiyu precipitation anomalously increases (decreases) in the concurrent year. Results of SVD are consistent with those of composite analysis which pass the significance test of Monte-Carlo at 0.05.
文摘The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the people and the socio-economic development of the area. By using precipitation data and sea surface temperature data, this study reveals the spatial and temporal variation patterns of extreme precipitation during the East African short rainy season. Key findings include significant rainfall variability, with Tanzania experiencing the highest amounts in December due to the southward shift of the Intertropical Convergence Zone (ITCZ), while other regions receive less than 100 mm. Extreme rainfall events (90th percentiles) are evenly distributed, averaging 2 to 10 days annually. Historical data shows maximum seasonal rainfall often peaks at 15 mm, with frequent occurrences of daily rainfall exceeding 10 mm during OND. Additionally, a positive correlation (0.48) between OND precipitation extremes and Indian Ocean Dipole (IOD) anomalies is statistically significant. These findings highlight the climatic variability and potential trends in extreme rainfall events in East Africa, providing valuable insights for regional climate adaptation strategies.
基金This study was supported by the " National Key Programme for Developing Basic Sciences"G 1998040900 Part 1.
文摘The difference is examined in atmospheric circulation and Sea Surface Temperatures (SSTs) in the trop-ics and subtropics between weak and strong convection over the tropical western Pacific warm pool (signified as WPWP). The WPWP is chosen as the region (110–160°E, 10–20°N), where the Outgoing Longwave Radiation (OLR) shows a great year-to-year variance. A composite study was carried out to examine the differences in atmospheric circulation and SSTs between weak and strong convection over WPWP. First, NCEP/NCAR re-analysis data and satellite-observed OLR data are used to examine the differences. ERA data, in which the OLR data are calculated, are then used for re-examination. The composite results show that the differences are remarkably similar in these two sets of data. The difference in circulations between weak and strong convection over WPWP is significantly associated with westward extension of the North Pacific subtropical anticyclone and stronger westerlies at the northwestern edge of the subtropical anticyclone. It also corresponds with the significant easterly anomaly and the descent anomaly in situ, i.e., over the WPWP. The most prominent characteristics of the difference of SSTs between weak and strong convection over the WPWP are the significant positive SST anomalies in the Indian Ocean, the Bay of Bengal and the South China Sea. In WPWP, however, there are only weak negative SST anomalies. Thus, the anomaly of OLR over WPWP is weakly associated with the SST anomalies in situ, while closely associated with the SST anomalies west of WPWP. Key words Convection over the western Pacific warm pool - Northwest Pacific subtropical high - Sea surface temperatures This study was supported by the “ National Key Programme for Developing Basic Sciences” G1998040900 Part 1.
基金The National Key Technologies Research and Development Program of China under contract No.2013BAD13B00the Public Science and Technology Research Funds Project of Ocean under contract No.20155014the Shanghai Universities First-class Disciplines Project(Fisheries)
文摘In the Northwest Pacific Ocean, the squid jigging fisheries from China, Japan and other countries and regions have targeted the west winter-spring cohort of neon flying squid(Ommastrephes bartramii) from August to November since the 1970 s. This squid is a short-lived ecological opportunist with a life-span of about one year,and its population is labile and recruitment variability is driven by the environment or climate change. This variability provides a challenge for ones to forecast the key habitats affected by climate change. The catch data of O. bartramii from Chinese squid jigging fishery and the satellite-derived sea surface temperature(SST) data are used in the Northwest Pacific Ocean from August to November of 1998 to 2004, the SST preferences of O.bartramii corresponding to high values of catch per fishing day(CPUE) are determined and monthly potential habitats are predicted using a histogram analysis of the SST data. The possible changes in the potential habitats of O. bartramii in the Northwest Pacific Ocean are estimated under four climate change scenarios based on the Fourth Assessment Report(AR4) of the Intergovernmental Panel on Climate Change, i.e., 0.5, 1, 2 and 4°C increases in the SST because of the climate change. The results reveal an obvious poleward shift of the potential habitats of O. bartramii in the Northwest Pacific Ocean.
文摘Using the monthly summer (June to August) precipitation data over China from 1979 to 1998,and the SST data in Indian Ocean of the overlapping periods,we have analyzed the spatial patterns as well as their temporal evolution of the summer precipitation,along with the relationships between the precipitation over China and the SST in Indian Ocean,with the EOF and SVD methods respectively.The important results are:several canonical anomalous summer precipitation patterns have been identified.The summer SST in Indian Ocean is positively correlated with the simultaneous precipitation in the Yangtze River and Huai River Basin,while negatively with that in other parts of China.
基金The effects of sea-land-air interactions in Asian monsoon on the climate change in China" by the Chinese Academy of Sciences (ZKCX2-SW-210) "Mechanisms for the generation of hungriness and optimized model for comprehensive prevention and control" by
文摘With the singular value decomposition (SVD), correlation analysis has been conducted between the Pacific Ocean sea surface temperature (SST) and northwestern China precipitation over March May (MAM). The result shows that there is good relationship between the North Pacific and spring precipitation in northwestern China. When the SST is of the peak El Ni駉 phase, precipitation is less over this part of the country except for the Qinghai-Tibetan Plateau; when the SST for the months DJF is of the mature El Ni駉 phase, precipitation is more over the region in the subsequent March May; when the North Pacific SST for DJF is of the La Ni馻 pattern, precipitation is less over the plateau in the subsequent March May. For the Pacific SST, the westerly drift, kuroshio current, Californian current and north equatorial current are all significantly correlating with the March May precipitation in northwestern China. Specifically, the SST in DJF over the kuroshio current region is out of phase with the precipitation in northern Xinjiang, i.e. when the former is low, the latter is more. In northwestern China, regions in which March May precipitation response to the variation of SST in the Pacific Ocean are northern Xinjiang, the Qinghai-Tibetan Plateau and areas off its northeastern part, the desert basin and western part of the Corridor of the Great Bend of Yellow River valley (Corridor).
文摘A Hybrid Coordinate Ocean Model (HYCOM) is used to simulate the sea surface temperature of the Tropical and North Pacific. Based on the different combinations of two air-Sea flux data sets (COADS and ECMWF) and two bulk parameter formulas (non-constant and constant), four numerical experiments are carried out. The following conclusions can be deduced from the numerical results. (1) The numerical results using non-constant bulk parameter formula are much better than those using constant one. In the Pacific area from 40°N to 20°S, the annual average SST obtained from the experiment using non-constant bulk parameter formula is 0.21 ℃ higher than that from the satellite-based SST climatology (the pathfinder data). However, the difference is 0.63 ℃ for the experiment when the using constant one. (2) HYCOM successfully simulates the monthly variation of climatological SST in tropical and north Pacific basins and monthly spatial variation of Western Pacific Warm Pool. Especially in the Pacific area from 40°N to 20°S, the difference of the seasonal averaged SST between pathfinder data and the result of experiment 2 (using COADS data set and non-constant bulk parameter formula) is only about 0.02 ℃. (3)The simulation results using different Air-Sea flux data are different and the difference is very large in some regions. In the northwest of the model region, the annual average SST obtained from experiment 2 (using COADS data set) is 1℃ higher than that obtained from experiment 4 (using ECMWF data set). Contrarily, the result of experiment 4 is 1 ℃ larger than that of experiment 2 in the southeast of the model region. The largest difference is about 4 ℃ occurred near the area of 58°N, 140°E and the Bohai sea.
基金the National Key R&D Program of China(No.2019YFA0607001).
文摘The National Oceanic and Atmospheric Administration(NOAA)Polar Orbiting Environmental Satellites(POES)High Resolution Picture Transmission(HRPT)data in the Northwest Pacific Ocean has been acquired through the SeaSpace ground station located at the Ocean University of China since October 2000,and these data have been processed by the TeraScan system.The sea surface temperature(SST)products in the Northwest Pacific Ocean derived from Advanced Very High Resolution Radiometer(AVHRR)are evaluated.We compared the SST products with the buoy SSTs during the stable operational period of each satellite.There are a total of 33715 and 71819 matchups acquired for daytime and nighttime,respectively,between the NOAA/AVHRR SSTs and buoy SSTs.For each satellite,the biases and standard deviations at daytime are smaller than those at nighttime.The monthly biases at daytime generally oscillate around 0℃,except for NOAA-15.By contrast,the monthly biases at nighttime mostly oscillate around−0.5℃.Both daytime and nighttime biases exhibit seasonal oscillations for all satellites.The seasonal biases of the SST difference at daytime between each satellite and buoy are mostly within±0.25℃,except for the negative bias of−0.58℃in May for NOAA-18.The seasonal biases of the SST difference at nighttime are mostly around−0.5℃,and NOAA-16 has a lower bias,i.e.,−0.86℃,in April.These results indicate that the accuracy of the SST products is inconsistent for each satellite during different periods.It is suggested that the NOAA/AVHRR data should be reprocessed to provide highly accurate SST products.
基金The US Department of State for sponsoring undergraduate exchange program。
文摘Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surface temperature(SST),sea surface salinity(SSS),mixed layer depth(MLD),and euphotic zone depth(EZD) in the northern B ay of Bengal(BoB) during three monsoon seasons were examined in this study based on remote sensing data for the period 2005 to 2020.To compare the NPP distribution between the coastal zones and open BoB,the study area was divided into five zones(Z1-Z5).Results suggest that most productive zones Z2 and Zl are located at the head bay area and are directly influenced by freshwater discharge together with riverine sediment and nutrient loads.Across Z1-Z5,the NPP ranges from 5 315.38 mg/(m^(2)·d) to 346.7 mg/(m^(2)·d)(carbon,since then the same).The highest monthly average NPP of 5 315.38 mg/(m^(2)·d) in February and 5 039.36 mg/(m^(2)·d) in June were observed from Z2,while the lowest monthly average of 346.72 mg/(m^(2)·d) was observed in March from Z4,which is an oceanic zone.EZD values vary from 6-154 m for the study area,and it has an inverse correlation with NPP concentration.EZD is deeper during the summer season and shallower during the wintertime,with a corresponding increase in productivity.Throughout the year,monthly SST shows slight fluctuation for the entire study area,and statistical analysis shows a significant correlation among NPP,and EZD,overall positive between NPP and MLD,whereas no significant correlation among SSS,and SST for the northern BoB.Long-term trends in SST and productivity were significantly po sitive in head bay zones but negatively productive in the open ocean.The findings in this study on the distribution of NPP,SST,SSS,MLD,and EZD and their seasonal variability in five different zones of BoB can be used to further improve the management of marine resources and overall environmental condition in response to climate changes in BoB as they are of utmost relevance to the fisheries for the three bordering countries.
基金supported by the National Natural Science Foundation of China (Grant No. 40810059005)
文摘Previous studies have shown that meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) dominates interannual variability of the EAJS in the summer months.This study investigates the tropical Pacific sea surface temperature (SST) anomalies associated with meridional displacement of the monthly EAJS during the summer.The meridional displacement of the EAJS in June is significantly associated with the tropical central Pacific SST anomaly in the winter of previous years,while displacements in July and August are related to tropical eastern Pacific SST anomalies in the late spring and concurrent summer.The EAJS tends to shift southward in the following June (July and August) corresponding to a warm SST anomaly in the central (eastern) Pacific in the winter (late spring-summer).The westerly anomaly south of the Asian jet stream is a result of tropical central Pacific warm SST anomaly-related warming in the tropical troposphere,which is proposed as a possible reason for southward displacement of the EAJS in June.The late spring-summer warm SST anomaly in the tropical eastern Pacific,however,may be linked to southward displacement of the EAJS in July and August through a meridional teleconnection over the western North Pacific (WNP) and East Asia.
基金National Key Basic Research and Development Planning Program of China(Program 973)(2013CB430202)China Special Fund for Meteorological Research in the Public Interest(Major Projects)(GYHY201506001-1)National Natural Science Foundation of China(91337109,41305080)
文摘By adopting characteristic index data for the Western Pacific Subtropical High(WPSH) from the National Climate Center of China, U.S. National Centers for Environmental Prediction-National Center for Atmospheric Research(NCEP/NCAR) reanalysis data, and the National Oceanic and Atmospheric Administration(NOAA) sea surface temperature(SST) data, we studied the WPSH variability considering the background of climate warming by using a Gaussian filter, moving averages, correlation analysis, and synthetic analysis. Our results show that with climate warming over the past 60 years, significant changes in the WPSH include its enlarged area, strengthened intensity,westward extended ridge point and southward expanded southern boundary, as well as enhanced interannual fluctuations in all these indices. The western ridge point of the WPSH consistently varies with temperature changes in the Northern Hemisphere, but the location of the ridgeline varies independently. The intensity and area of the WPSH were both significantly increased in the late 1980 s. Specifically, the western ridge point started to significantly extend westward in the early 1990 s, and the associated interannual variability had a significant increase in the late 1990 s; in addition, the ridgeline was swaying along the north-south-north direction, and the corresponding variability was also greatly enhanced in the late 1990 s. With climate warming, the SST increase becomes more weakly correlated with the WPSH intensity enhancement but more strongly correlated with the westward extension of the ridge point in the equatorial central and eastern Pacific Ocean in winter, corresponding to an expanding WPSH in space. In the northern Pacific in winter, the SST decrease has a weaker correlation with the southerly location of the ridgeline but also a stronger correlation with the westward extension of the ridge point. In the tropical western Pacific in winter, the correlations of the SST decrease with the WPSH intensity enhancement, and the westward extension of the ridge point is strengthened. These observations can be explained by strengthened Hadley circulations, the dominant effects of the southward shift, and additional effects of the weakened ascending branch of the Walker circulation during warm climatological periods,which consequently lead to strengthened intensities, increased areas, and southward expansions of the WPSH in summer.
基金Supported by the National Natural Science Foundation of China(Nos.41230959,41076030,41106042,40906038,41206044)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA11030104)the Project of Global Change and Air-Sea Interaction
文摘Changes in sea surface temperature (SST), seawater oxygen isotope (δ18Osw), and local salinity proxy (δ18Osw-ss ) in the past 155 ka were studied using a sediment core (MD06-3052) from the northern edge of the western Pacific Warm Pool (WPWP), within the flow path of the bifurcation of the North Equatorial Current. Our records reveal a lead-lag relationship between paired Mg/Ca-SST and δ18O during Termination II and the last interglacial period. Similarity in SST between our site and the Antarctic temperature proxy and in CO2 profile showed a close connection between the WPWP and the Antarctic. Values of 818Osw exhibited very similar variations to those of mean ocean δ18Osw, owing to the past sea-level changes on glacial-interglacial timescale. Calculated values of δ18O reflect a more saline condition during high local summer insolation (SI) periods. Such correspondence between δ18O and local SI in the WPWP may reflect complex interaction between ENSO and monsoon, which was stimulated by changes in solar irradiance and their influence on the local hydrologic cycle. This then caused a striking reorganization of atmospheric circulation over the WPWP.
文摘Large-scale water transport is one of the key factors that affect sea surface temperature anomaly(SSTA) in the eastern equatorial Pacific(EEP).The relationship between the wave transport in the tropical Pacific and the SSTA in the EEP is examined by different methods,including band-pass filtering,period analysis,correlation analysis,significant analysis,and empirical orthogonal function(EOF) analysis.We have found that the eastward shift of the wave transport anomaly in the tropical Pacific,with a period of 2 a and enhancing the transport of warm waters from the western Pacific warm pool,precedes the increase of sea surface temperature(SST) in the EEP.The wave transport and the SSTA in the EEP have a maximum correlation of 0.65 with a time-lag of 6 months(transport variation precedes the temperature).The major periods(3.7 a and 2.45 a) of the wave transport variability,as revealed by the EOF analysis,appear to be consistent with the SSTA oscillation cycle in the EEP.Based on the first occurrence of a significant SSTA in the Ni?o 3 region(5°S–5°N,90°–150°W),two types of warm events are defined.The wave transport anomalies in two types present predominantly the west anomaly in the tropical Pacific,it is that the wave transport continues transport warm water from west to east before the onset of the warm event.The impact of wave-induced water transport on the SSTA in the EEP is confirmed by the heat flux of the wave transport.The wave transport exerts significant effect on the SSTA variability in the EEP and thus is not neglectable in the further studies.
基金Instrument Developing Project of the Chinese Academy of Sciences(YZ201136)National Natural Science Foundation of China(41106086,41474065,41376059,41376061,91428205,41576036,41076028,41476167,and 41606080)Chinese Academy of Sciences Scholarship,the Strat
基金supported by the National Basic Research Program of China(2012CB955602)Natural Science Foundation of China(41176006 and 41221063)
文摘The responses of Sea Surface Temperature(SST) to greenhouse gas(GHG) and anthropogenic aerosol in the North Pa- cific are compared based on the historical single and all-forcing simulations with Geophysical Fluid Dynamics Laboratory Climate Model version 3(GFDL CM3). During 1860–2005, the effect of GHG forcing on the North Pacific SST is opposite to that of the aerosol forcing. Specifically, the aerosol cooling effect exceeds the GHG warming effect in the Kuroshio Extension(KE) region dur- ing 1950–2004 in the CM3 single forcing. The mid-latitude response of ocean circulation to the GHG(aerosol) forcing is to enhance(weaken) the Subtropical Gyre. Then the SST warming(cooling) lies on the zonal band of 40?N because of the increased(reduced) KE warm advection effect in the GHG(aerosol) forcing simulations, and the cooling effect to SST will surpass the warming effect in the KE region in the historical all-forcing simulations. Besides, the positive feedback between cold SST and cloud can also strengthen the aerosol cooling effect in the KE region during boreal summer, when the mixed layer depth is shallow. In the GHG(aerosol) forcing simulations, corresponding to warming(cooling) SST in the KE region, the weakened(enhanced) Aleutian Low appears in the Northeast Pacific. Consequently, the SST responses to all-forcing in the historical simulations are similar to the re- sponses to aerosol forcing in sign and spatial pattern, hence the aerosol effect is quite important to the SST cooling in the mid-latitude North Pacific during the past 55 years.
基金jointly supported by the National Natural Science Foundation of China (Grant No. 42005037)Special Project of Innovative Development, CMA (CXFZ2021J022, CXFZ2022J008, and CXFZ2021J028)+1 种基金Liaoning Provincial Natural Science Foundation Project (Ph.D. Start-up Research Fund 2019-BS214)Research Project of the Institute of Atmospheric Environment, CMA (2021SYIAEKFMS08, 2020SYIAE08 and 2021SYIAEKFMS09)
文摘The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months.
基金the National Natural Science Foundation of China(Grant Nos.42130601,42075060,and 41875046).
文摘This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific SST.The principal component 1(PC1)of the first leading mode is obtained by empirical orthogonal function decomposition.Reanalysis data,numerical experiments,and CMIP5 model outputs all suggest that the PC1 events(positive-minus-negative PC1 events),located relatively northward(i.e.,North PC1 events),more easily weaken the Arctic SPV compared to the PC1 events located relatively southward(i.e.,South PC1 events).The analysis indicates that the North PC1-related Aleutian low anomaly is located over the northern North Pacific and thus enhances the climatological trough,which strengthens the planetary-scale wave 1 at mid-to-high latitudes and thereby weakens the SPV.The weakened stratospheric circulation further extends into the troposphere and favors negative surface temperature anomalies over Eurasia.By contrast,the South PC1-related Aleutian low anomaly is located relatively southward,and its constructive interference with the climatological trough is less efficient at high latitudes.Thus,the South PC1 events could not induce an evident enhancement of the planetary-scale waves at high latitudes and thereby a weakening of the SPV on average.The Eurasian cooling associated with South PC1 events(positive-minus-negative PC1 events)is also not prominent.The results of this study suggest that the meridional positions of the PC1 events may be useful for predicting the Arctic SPV and Eurasian surface temperature variations.
文摘Mean seasonal surface temperatures of the North Pacific are illustrated in three maps. Twenty nine years of ship-injection temperatures are used for the whole North Pacific (north of 20?N). Map number two shows geographical regions of the month of highest sea surface temperature. There are two broad bands in the central and eastern basin, trending northeast/southwest, such that the September band lies east of the August band along a given latitude line. Map three depicts regions of the lowest monthly mean temperatures. March is the most common month, but in the middle of the ocean is a band of Februarys trending northeast/southwest. These features on maps two and three are interpreted in terms of the newly proposed wide warm surface current and its seasonal variations, mainly in horizontal position, flowing northeastward off California. It has not been found possible to compare maps two and three with the results from any earlier work. Map one shows the mean seasonal range of surface temperature, which has a character similar to maps going all the way back to the late 1800s, but is based on considerably more data.