For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derive...For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derived successfully using wind speed data estimated by the TOPEX satellite altimeter. From the results we find that: (1) the mean sea surface roughness in winter is greater than in summer; (2) compared with other sea areas, the sea surface roughness in the sea area east of Japan ( N30°- 40°, E135°- 150°) is larger than in other sea areas; (3) sea surface roughness in the South China Sea changes more greatly than that in the Bohai Sea, Yellow Sea and East China Sea.展开更多
Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource ex...Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource exploitation, and other activities. The seasonal characteristics of the long-term trends in China's seas WS and SWH are determined based on 24 a (1988-2011) cross-calibrated, multi-platform (CCMP) wind data and 24 a hindcast wave data obtained with the WAVEWATCH-III (WW3) wave model forced by CCMP wind data. The results show the following. (1) For the past 24 a, the China's WS and SWH exhibit a significant increasing trend as a whole, of 3.38 cm/(s.a) in the WS, 1.3 cm/a in the SWH. (2) As a whole, the increasing trend of the China's seas WS and SWH is strongest in March-April-May (MAM) and December-January-February (DJF), followed by June-July-August (JJA), and smallest in September-October-November (SON). (3) The areal extent of significant increases in the WS was largest in MAM, while the area decreased in JJA and DJF; the smallest area was apparent in SON. In contrast to the WS, almost all of China's seas exhibited a significant increase in SWH in MAM and DJF; the range was slightly smaller in JJA and SON. The WS and SWH in the Bohai Sea, the Yellow Sea, East China Sea, the Tsushima Strait, the Taiwan Strait, the northern South China Sea, the Beibu Gull and the Gulf of Thailand exhibited a significant increase in all seasons. (4) The variations in China's seas SWH and WS depended on the season. The areas with a strong increase usually appeared in DJF.展开更多
This study investigates the long-term changes of monthly sea surface wind speeds over the China seas from 1988 to 2015. The 10-meter wind speeds products from four major global reanalysis datasets with high resolution...This study investigates the long-term changes of monthly sea surface wind speeds over the China seas from 1988 to 2015. The 10-meter wind speeds products from four major global reanalysis datasets with high resolution are used: Cross-Calibrated Multi-Platform data set(CCMP), NCEP climate forecast system reanalysis data set(CFSR),ERA-interim reanalysis data set(ERA-int) and Japanese 55-year reanalysis data set(JRA55). The monthly sea surface wind speeds of four major reanalysis data sets have been investigated through comparisons with the longterm and homogeneous observation wind speeds data recorded at ten stations. The results reveal that(1) the wind speeds bias of CCMP, CFSR, ERA-int and JRA55 are 0.91 m/s, 1.22 m/s, 0.62 m/s and 0.22 m/s, respectively.The wind speeds RMSE of CCMP, CFSR, ERA-int and JRA55 are 1.38 m/s, 1.59 m/s, 1.01 m/s and 0.96 m/s,respectively;(2) JRA55 and ERA-int provides a realistic representation of monthly wind speeds, while CCMP and CFSR tend to overestimate observed wind speeds. And all the four data sets tend to underestimate observed wind speeds in Bohai Sea and Yellow Sea;(3) Comparing the annual wind speeds trends between observation and the four data sets at ten stations for 1988-1997, 1988–2007 and 1988–2015, the result show that ERA-int is superior to represent homogeneity monthly wind speeds over the China seaes.展开更多
A scanning microwave radiometer(RM) was launched on August 16,2011,on board HY-2 satellite.The six-month long global sea surface wind speeds observed by the HY-2 scanning microwave radiometer are preliminarily valid...A scanning microwave radiometer(RM) was launched on August 16,2011,on board HY-2 satellite.The six-month long global sea surface wind speeds observed by the HY-2 scanning microwave radiometer are preliminarily validated using in-situ measurements and WindSat observations,respectively,from January to June 2012.The wind speed root-mean-square(RMS) difference of the comparisons with in-situ data is 1.89 m/s for the measurements of NDBC and 1.72 m/s for the recent four-month data measured by PY30-1 oil platform,respectively.On a global scale,the wind speeds of HY-2 RM are compared with the sea surface wind speeds derived from WindSat,the RMS difference of 1.85 m/s for HY-2 RM collocated observations data set is calculated in the same period as above.With analyzing the global map of a mean difference between HY-2 RM and WindSat,it appears that the bias of the sea surface wind speed is obviously higher in the inshore regions.In the open sea,there is a relatively higher positive bias in the mid-latitude regions due to the overestimation of wind speed observations,while the wind speeds are underestimated in the Southern Ocean by HY-2 RM relative to WindSat observations.展开更多
Conventional retrieval and neural network methods are used simultaneously to retrieve sea surface wind speed(SSWS)from HH-polarized Sentinel-1(S1)SAR images.The Polarization Ratio(PR)models combined with the CMOD5.N G...Conventional retrieval and neural network methods are used simultaneously to retrieve sea surface wind speed(SSWS)from HH-polarized Sentinel-1(S1)SAR images.The Polarization Ratio(PR)models combined with the CMOD5.N Geophysical Model Function(GMF)is used for SSWS retrieval from the HH-polarized SAR data.We compared different PR models developed based on previous C-band SAR data in HH-polarization for their applications to the S1 SAR data.The recently proposed CMODH,i.e.,retrieving SSWS directly from the HHpolarized S1 data is also validated.The results indicate that the CMODH model performs better than results achieved using the PR models.We proposed a neural network method based on the backward propagation(BP)neural network to retrieve SSWS from the S1 HH-polarized data.The SSWS retrieved using the BP neural network model agrees better with the buoy measurements and ASCAT dataset than the results achieved using the conventional methods.Compared to the buoy measurements,the bias,root mean square error(RMSE)and scatter index(SI)of wind speed retrieved by the BP neural network model are 0.10 m/s,1.38 m/s and 19.85%,respectively,while compared to the ASCAT dataset the three parameters of training set are–0.01 m/s,1.33 m/s and 15.10%,respectively.It is suggested that the BP neural network model has a potential application in retrieving SSWS from Sentinel-1 images acquired at HH-polarization.展开更多
In this study, the statistical characterization of sea conditions in the East China Sea(ECS) is investigated by analyzing a significant wave height and wind speed data at a 6-hour interval for 30 years(1980–2009), wh...In this study, the statistical characterization of sea conditions in the East China Sea(ECS) is investigated by analyzing a significant wave height and wind speed data at a 6-hour interval for 30 years(1980–2009), which was simulated and computed using the WAVEWATCH Ⅲ(WW3) model. The monthly variations of these parameters showed that the significant wave height and wind speed have minimum values of 0.73 m and 5.15 ms^(-1) and 1.73 m and 8.24 ms^(-1) in the month of May and December, respectively. The annual, seasonal, and monthly mean sea state characterizations showed that the slight sea generally prevailed in the ECS and had nearly the highest occurrence in all seasons and months. Additionally, the moderate sea prevailed in the winter months of December and January, while the smooth(wavelets) sea prevailed in May. Furthermore, the spatial variation of sea states showed that the calm and smooth sea had the largest occurrences in the northern ECS. The slight sea occurred mostly(above 30%) in parts of the ECS and the surrounding locations, while higher occurrences of the rough and very rough seas were distributed in waters between the southwest ECS and the northeast South China Sea(SCS). The occurrences of the phenomenal sea conditions are insignificant and are distributed in the northwest Pacific and its upper region, which includes the Southern Kyushu-Palau Ridge and Ryukyu Trench.展开更多
The North Atlantic Oscillation (NAO) is one of the major causes of many recent changes in the Arctic Ocean. Generally, it is related to wind speed, sea surface temperature (SST), and sea ice cover. In this study, ...The North Atlantic Oscillation (NAO) is one of the major causes of many recent changes in the Arctic Ocean. Generally, it is related to wind speed, sea surface temperature (SST), and sea ice cover. In this study, we analyzed the distributions of and correlations between SST, wind speed, NAO, and sea ice cover from 2003 to 2009 in the Greenland Sea at 10°W to 10°E, 65°N to 80°N. SST reached its peak in July, while wind speed reached its minimum in July. Seasonal variability of SST and wind speed was different for different regions. SST and wind speed mainly had negative correlations. Detailed correlation research was focused on the 75~N to 80~N band. Regression analysis shows that in this band, the variation of SST lagged three months behind that of wind speed Ice cover and NAO had a positive correlation, and the correlation coefficient between ice cover and NAO in the year 2007 was 0.61 SST and NAO also had a positive correlation, and SST influenced NAO one month in advance. The correlation coefficients between SST and NAO reached 0.944 for the year 2005, 0.7 for the year 2008, and 0.74 for the year 2009 after shifting SST one month later. NAO also had a positive correlation with wind speed, and it also influenced wind speed one month in advance. The correlation coefficients between NAO and wind speed reached 0.783, 0.813, and 0.818 for the years 2004, 2005, and 2008, respectively, after shifting wind speed one month earlier.展开更多
One-dimensional synthetic aperture microwave radiometers have higher spatial resolution and record measurements at multiple incidence angles.In this paper,we propose a multiple linear regression method to retrieve sea...One-dimensional synthetic aperture microwave radiometers have higher spatial resolution and record measurements at multiple incidence angles.In this paper,we propose a multiple linear regression method to retrieve sea surface wind speed at an incidence angle between 0°65°.We assume that a one-dimensional synthetic aperture microwave radiometer operates at frequencies of 6.9,10.65,18.7,23.8 and 36.5 GHz.Then,the microwave radiative transfer forward model is used to simulate the measured brightness temperatures.The sensitivity of the brightness temperatures at 0°65°to the sea surface wind speed is calculated.Then,vertical polarization channels(VR),horizontal polarization channels(HR)and all channels(AR)are used to retrieve the sea surface wind speed via a multiple linear regression algorithm at 0°65°,and the relationship between the retrieval error and incidence angle is obtained.The results are as follows:(1)The sensitivity of the vertical polarization brightness temperature to the sea surface wind speed is smaller than that of the horizontal polarization.(2)The retrieval error increases with Gaussian noise.The retrieval error of VR first increases and then decreases with increasing incidence angle,the retrieval error of HR gradually decreases with increasing incidence angle,and the retrieval error of AR first decreases and then increases with increasing incidence angle.(3)The retrieval error of AR is the lowest and it is necessary to retrieve the sea surface wind speed at a larger incidence angle for AR.展开更多
The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show t...The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer (MABL) height front, with active warm and cold-ocean eddies around. The MABL has an obvious transitional structure along the strong SST front, with greater (lesser) heights over the north (south) side. The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies. The surface wind speed increases (decreases) about 0.32 (0.41) m/s and the MABL elevates (drops) approximate 55 (54) m per 1℃ of SST perturbation induced by warm (cold) eddies. The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL, which is confirmed by the linear relationships between the downwind (crosswind) SST gradient and wind divergence (curl).展开更多
Extreme values of wind speed were studied based on the highly detailed ERA5 dataset covering the central part of the Kara Sea. Cases in which the ice coverage of the cells exceeded 15% were filtered. Our study shows t...Extreme values of wind speed were studied based on the highly detailed ERA5 dataset covering the central part of the Kara Sea. Cases in which the ice coverage of the cells exceeded 15% were filtered. Our study shows that the wind speed extrema obtained from station observations, as well as from modelling results in the framework of mesoscale models, can be divided into two groups according to their probability distribution laws. One group is specifically designated as black swans, with the other referred to as dragons (or dragon-kings). In this study we determined that the data of ERA5 accurately described the swans, but did not fully reproduce extrema related to the dragons;these extrema were identified only in half of ERA5 grid points. Weibull probability distribution function (PDF) parameters were identified in only a quarter of the pixels. The parameters were connected almost deterministically. This converted the Weibull function into a one-parameter dependence. It was not clear whether this uniqueness was a consequence of the features of the calculation algorithm used in ERA5, or whether it was a consequence of a relatively small area being considered, which had the same wind regime. Extremes of wind speed arise as mesoscale features and are associated with hydrodynamic features of the wind flow. If the flow was non-geostrophic and if its trajectory had a substantial curvature, then the extreme velocities were distributed according to a rule similar to the Weibull law.展开更多
Considering about the effect of whitecaps and foams on pulse-limited Radar Altimeters, an improved algorithm of retrieving sea surface wind speed is proposed in this paper. Firstly, a four-layer dielectric model is es...Considering about the effect of whitecaps and foams on pulse-limited Radar Altimeters, an improved algorithm of retrieving sea surface wind speed is proposed in this paper. Firstly, a four-layer dielectric model is established in order to simulate an air-sea interface. Secondly, the microwave reflectivity of a sea surface covered by spray droplets and foams at 13.5 GHz is computed based on the established model. These computed results show that the effect of spray droplets and foams in high sea state conditions shall not be negligible on retrieving sea surface wind speed. Finally, compared with the analytical algorithms proposed by Zhao and some calculated results based on a three-layer dielectric model, an improved algorithm of retrieving sea surface wind speed is presented. At a high wind speed, the improved algorithm is in a better accord with some empirical algorithms such as Brown, Young ones and et al., and also in a good agreement with ZT and other algorithms at low wind speed. This new improved algorithm will be suitable not only for low wind speed retrieval, but also for high wind speed retrieval. Better accuracy and effectiveness of wind speed retrieval can also be obtained.展开更多
The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) d...The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) data in the coastal waters near Hong Kong during a period from October 2005 to July 2007. The retrieved wind speeds are evaluated by comparing with buoy measurements and the QuikSCAT (quick scatterometer) wind products. The results show that the CMOD4 model gives the best performance at wind speeds lower than 15 m/s. The correlation coefficients with buoy and QuikSCAT winds are 0.781 and 0.896, respectively. The root mean square errors are the same 1.74 m/s. Namely, the CMOD4 model is the best one for sea surface wind speed retrieval from ASAR data in the coastal waters near Hong Kong.展开更多
The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite,launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm,the AMSR2 enables remote...The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite,launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm,the AMSR2 enables remote monitoring of geophysical parameters such as sea surface temperature,wind speed,water vapor,and liquid cloud water content. However,rain alters the properties of atmospheric scattering and absorption,which contaminates the brightness temperatures measured by the microwave radiometer. Therefore,it is difficult to retrieve AMSR2-derived sea surface wind speeds under rainfall conditions. Based on microwave radiative transfer theory,and using AMSR2 L1 brightness temperature data obtained in August 2012 and NCEP reanalysis data,we studied the sensitivity of AMSR2 brightness temperatures to rain and wind speed,from which a channel combination of brightness temperature was established that is insensitive to rainfall,but sensitive to wind speed. Using brightness temperatures obtained with the proposed channel combination as input parameters,in conjunction with HRD wind field data,and adopting multiple linear regression and BP neural network methods,we established an algorithm for hurricane wind speed retrieval under rainfall conditions. The results showed that the standard deviation and relative error of retrievals,obtained using the multiple linear regression algorithm,were 3.1 m/s and 13%,respectively. However,the standard deviation and relative error of retrievals obtained using the BP neural network algorithm were better(2.1 m/s and 8%,respectively). Thus,the results of this paper preliminarily verified the feasibility of using microwave radiometers to extract sea surface wind speeds under rainfall conditions.展开更多
Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)sig...Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps(DDMs),whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds.However,the bistatic radar cross section(BRCS),which is strongly related to the sea surface roughness,is extensively used in radar.Therefore,a bistatic radar cross section(BRCS) map with a modified BRCS equation in a GNSS-R application is introduced.On the BRCS map,three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed.Airborne Hurricane Dennis(2005) GNSS-R data are then used.More than 16 000 BRCS maps are generated to establish GMFs of the three observables.Finally,the proposed model and classic one-dimensional delay waveform(DW) matching methods are compared,and the proposed model demonstrates a better performance for the high wind speed retrievals.展开更多
Daily observations of wind speed at 12 stations in the Greater Beijing Area during 1960–2008 were homogenized using the Multiple Analysis of Series for Homogenization method. The linear trends in the regional mean an...Daily observations of wind speed at 12 stations in the Greater Beijing Area during 1960–2008 were homogenized using the Multiple Analysis of Series for Homogenization method. The linear trends in the regional mean annual and seasonal (winter, spring, summer and autumn) wind speed series were-0.26,-0.39,-0.30,-0.12 and-0.22 m s-1 (10 yr)-1 , respectively. Winter showed the greatest magnitude in declining wind speed, followed by spring, autumn and summer. The annual and seasonal frequencies of wind speed extremes (days) also decreased, more prominently for winter than for the other seasons. The declining trends in wind speed and extremes were formed mainly by some rapid declines during the 1970s and 1980s. The maximum declining trend in wind speed occurred at Chaoyang (CY), a station within the central business district (CBD) of Beijing with the highest level of urbanization. The declining trends were in general smaller in magnitude away from the city center, except for the winter case in which the maximum declining trend shifted northeastward to rural Miyun (MY). The influence of urbanization on the annual wind speed was estimated to be about-0.05 m s-1 (10 yr)-1 during 1960–2008, accounting for around one fifth of the regional mean declining trend. The annual and seasonal geostrophic wind speeds around Beijing, based on daily mean sea level pressure (MSLP) from the ERA-40 reanalysis dataset, also exhibited decreasing trends, coincident with the results from site observations. A comparative analysis of the MSLP fields between 1966–1975 and 1992–2001 suggested that the influences of both the winter and summer monsoons on Beijing were weaker in the more recent of the two decades. It is suggested that the bulk of wind in Beijing is influenced considerably by urbanization, while changes in strong winds or wind speed extremes are prone to large-scale climate change in the region.展开更多
Mean sea level rise and climatological wind speed changes occur as part of the ongoing climate change and future projections of both variables are still highly uncertain. Here the Baltic Sea’s response in extreme sea...Mean sea level rise and climatological wind speed changes occur as part of the ongoing climate change and future projections of both variables are still highly uncertain. Here the Baltic Sea’s response in extreme sea levels to perturbations in mean sea level and wind speeds is investigated in a series of simulations with a newly developed storm surge model based on the nucleus for European modeling of the ocean(NEMO)-Nordic. A simple linear model with only two tunable parameters is found to capture the changes in the return levels extremely well. The response to mean sea level rise is linear and nearly spatially uniform, meaning that a mean sea level rise of 1 m increases the return levels by a equal amount everywhere. The response to wind speed perturbations is more complicated and return levels are found to increase more where they are already high. This behaviour is alarming as it suggests that already flooding prone regions like the Gulf of Finland will be disproportionally adversely affected in a future windier climate.展开更多
This paper analyzes the sea surface backward thermal radiation data in the China Sea observed by the mmwave channel of FY3 MWRI, explains the reason for which the analysis method combined with multiple mmwave channels...This paper analyzes the sea surface backward thermal radiation data in the China Sea observed by the mmwave channel of FY3 MWRI, explains the reason for which the analysis method combined with multiple mmwave channels is conducive to wind inversion, uses the complex model of the two-scale randomly rough surface with foam scattering layer to calculate the backward heat emission, analyzes the different response characteristics of the thermal radiation characteristics of each channel with the change of the sea surface wind speed, and establishes the wind speed inversion model applying to the microwave radiometer, achieving better results than in previous studies. The sea surface medium-low wind speed precision standard deviation of new model reaches 1.2 m/s (0 - 15 m/s);the inversion strong wind data are consistent with the island fixed buoys data, and the global sea surface wind speed image schematic diagram is given.展开更多
文摘For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derived successfully using wind speed data estimated by the TOPEX satellite altimeter. From the results we find that: (1) the mean sea surface roughness in winter is greater than in summer; (2) compared with other sea areas, the sea surface roughness in the sea area east of Japan ( N30°- 40°, E135°- 150°) is larger than in other sea areas; (3) sea surface roughness in the South China Sea changes more greatly than that in the Bohai Sea, Yellow Sea and East China Sea.
基金The National Basic Research Program of China under contract Nos 2015CB453200,2013CB956200,2012CB957803 and2010CB950400the National Natural Science Foundation of China under contract Nos 41275086 and 41475070
文摘Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource exploitation, and other activities. The seasonal characteristics of the long-term trends in China's seas WS and SWH are determined based on 24 a (1988-2011) cross-calibrated, multi-platform (CCMP) wind data and 24 a hindcast wave data obtained with the WAVEWATCH-III (WW3) wave model forced by CCMP wind data. The results show the following. (1) For the past 24 a, the China's WS and SWH exhibit a significant increasing trend as a whole, of 3.38 cm/(s.a) in the WS, 1.3 cm/a in the SWH. (2) As a whole, the increasing trend of the China's seas WS and SWH is strongest in March-April-May (MAM) and December-January-February (DJF), followed by June-July-August (JJA), and smallest in September-October-November (SON). (3) The areal extent of significant increases in the WS was largest in MAM, while the area decreased in JJA and DJF; the smallest area was apparent in SON. In contrast to the WS, almost all of China's seas exhibited a significant increase in SWH in MAM and DJF; the range was slightly smaller in JJA and SON. The WS and SWH in the Bohai Sea, the Yellow Sea, East China Sea, the Tsushima Strait, the Taiwan Strait, the northern South China Sea, the Beibu Gull and the Gulf of Thailand exhibited a significant increase in all seasons. (4) The variations in China's seas SWH and WS depended on the season. The areas with a strong increase usually appeared in DJF.
基金The National Key R&D Program of China under contract No.2016YFC1401905the National Natural Science Foundation of China under contract No.41776004the Fundamental Research Funds for the Central Universities under contract No.2016B12514
文摘This study investigates the long-term changes of monthly sea surface wind speeds over the China seas from 1988 to 2015. The 10-meter wind speeds products from four major global reanalysis datasets with high resolution are used: Cross-Calibrated Multi-Platform data set(CCMP), NCEP climate forecast system reanalysis data set(CFSR),ERA-interim reanalysis data set(ERA-int) and Japanese 55-year reanalysis data set(JRA55). The monthly sea surface wind speeds of four major reanalysis data sets have been investigated through comparisons with the longterm and homogeneous observation wind speeds data recorded at ten stations. The results reveal that(1) the wind speeds bias of CCMP, CFSR, ERA-int and JRA55 are 0.91 m/s, 1.22 m/s, 0.62 m/s and 0.22 m/s, respectively.The wind speeds RMSE of CCMP, CFSR, ERA-int and JRA55 are 1.38 m/s, 1.59 m/s, 1.01 m/s and 0.96 m/s,respectively;(2) JRA55 and ERA-int provides a realistic representation of monthly wind speeds, while CCMP and CFSR tend to overestimate observed wind speeds. And all the four data sets tend to underestimate observed wind speeds in Bohai Sea and Yellow Sea;(3) Comparing the annual wind speeds trends between observation and the four data sets at ten stations for 1988-1997, 1988–2007 and 1988–2015, the result show that ERA-int is superior to represent homogeneity monthly wind speeds over the China seaes.
基金The National High-Tech Project of China under contract No.2008AA09A403the Marine Public Welfare Project of China under contract No.201105032
文摘A scanning microwave radiometer(RM) was launched on August 16,2011,on board HY-2 satellite.The six-month long global sea surface wind speeds observed by the HY-2 scanning microwave radiometer are preliminarily validated using in-situ measurements and WindSat observations,respectively,from January to June 2012.The wind speed root-mean-square(RMS) difference of the comparisons with in-situ data is 1.89 m/s for the measurements of NDBC and 1.72 m/s for the recent four-month data measured by PY30-1 oil platform,respectively.On a global scale,the wind speeds of HY-2 RM are compared with the sea surface wind speeds derived from WindSat,the RMS difference of 1.85 m/s for HY-2 RM collocated observations data set is calculated in the same period as above.With analyzing the global map of a mean difference between HY-2 RM and WindSat,it appears that the bias of the sea surface wind speed is obviously higher in the inshore regions.In the open sea,there is a relatively higher positive bias in the mid-latitude regions due to the overestimation of wind speed observations,while the wind speeds are underestimated in the Southern Ocean by HY-2 RM relative to WindSat observations.
基金The National Key Research and Development Program under contract Nos 2016YFC1402703 and 2018YFC1407100
文摘Conventional retrieval and neural network methods are used simultaneously to retrieve sea surface wind speed(SSWS)from HH-polarized Sentinel-1(S1)SAR images.The Polarization Ratio(PR)models combined with the CMOD5.N Geophysical Model Function(GMF)is used for SSWS retrieval from the HH-polarized SAR data.We compared different PR models developed based on previous C-band SAR data in HH-polarization for their applications to the S1 SAR data.The recently proposed CMODH,i.e.,retrieving SSWS directly from the HHpolarized S1 data is also validated.The results indicate that the CMODH model performs better than results achieved using the PR models.We proposed a neural network method based on the backward propagation(BP)neural network to retrieve SSWS from the S1 HH-polarized data.The SSWS retrieved using the BP neural network model agrees better with the buoy measurements and ASCAT dataset than the results achieved using the conventional methods.Compared to the buoy measurements,the bias,root mean square error(RMSE)and scatter index(SI)of wind speed retrieved by the BP neural network model are 0.10 m/s,1.38 m/s and 19.85%,respectively,while compared to the ASCAT dataset the three parameters of training set are–0.01 m/s,1.33 m/s and 15.10%,respectively.It is suggested that the BP neural network model has a potential application in retrieving SSWS from Sentinel-1 images acquired at HH-polarization.
基金supported by the National Key Research and Development Program of China(No.2016YFC1401405)the National Natural Science Foundation of China(No.41376010)
文摘In this study, the statistical characterization of sea conditions in the East China Sea(ECS) is investigated by analyzing a significant wave height and wind speed data at a 6-hour interval for 30 years(1980–2009), which was simulated and computed using the WAVEWATCH Ⅲ(WW3) model. The monthly variations of these parameters showed that the significant wave height and wind speed have minimum values of 0.73 m and 5.15 ms^(-1) and 1.73 m and 8.24 ms^(-1) in the month of May and December, respectively. The annual, seasonal, and monthly mean sea state characterizations showed that the slight sea generally prevailed in the ECS and had nearly the highest occurrence in all seasons and months. Additionally, the moderate sea prevailed in the winter months of December and January, while the smooth(wavelets) sea prevailed in May. Furthermore, the spatial variation of sea states showed that the calm and smooth sea had the largest occurrences in the northern ECS. The slight sea occurred mostly(above 30%) in parts of the ECS and the surrounding locations, while higher occurrences of the rough and very rough seas were distributed in waters between the southwest ECS and the northeast South China Sea(SCS). The occurrences of the phenomenal sea conditions are insignificant and are distributed in the northwest Pacific and its upper region, which includes the Southern Kyushu-Palau Ridge and Ryukyu Trench.
基金supported by the National Natural Science Foundation of China (Grant No. 41276097)
文摘The North Atlantic Oscillation (NAO) is one of the major causes of many recent changes in the Arctic Ocean. Generally, it is related to wind speed, sea surface temperature (SST), and sea ice cover. In this study, we analyzed the distributions of and correlations between SST, wind speed, NAO, and sea ice cover from 2003 to 2009 in the Greenland Sea at 10°W to 10°E, 65°N to 80°N. SST reached its peak in July, while wind speed reached its minimum in July. Seasonal variability of SST and wind speed was different for different regions. SST and wind speed mainly had negative correlations. Detailed correlation research was focused on the 75~N to 80~N band. Regression analysis shows that in this band, the variation of SST lagged three months behind that of wind speed Ice cover and NAO had a positive correlation, and the correlation coefficient between ice cover and NAO in the year 2007 was 0.61 SST and NAO also had a positive correlation, and SST influenced NAO one month in advance. The correlation coefficients between SST and NAO reached 0.944 for the year 2005, 0.7 for the year 2008, and 0.74 for the year 2009 after shifting SST one month later. NAO also had a positive correlation with wind speed, and it also influenced wind speed one month in advance. The correlation coefficients between NAO and wind speed reached 0.783, 0.813, and 0.818 for the years 2004, 2005, and 2008, respectively, after shifting wind speed one month earlier.
基金National Natural Science Foundation of China(41475019,41631072)
文摘One-dimensional synthetic aperture microwave radiometers have higher spatial resolution and record measurements at multiple incidence angles.In this paper,we propose a multiple linear regression method to retrieve sea surface wind speed at an incidence angle between 0°65°.We assume that a one-dimensional synthetic aperture microwave radiometer operates at frequencies of 6.9,10.65,18.7,23.8 and 36.5 GHz.Then,the microwave radiative transfer forward model is used to simulate the measured brightness temperatures.The sensitivity of the brightness temperatures at 0°65°to the sea surface wind speed is calculated.Then,vertical polarization channels(VR),horizontal polarization channels(HR)and all channels(AR)are used to retrieve the sea surface wind speed via a multiple linear regression algorithm at 0°65°,and the relationship between the retrieval error and incidence angle is obtained.The results are as follows:(1)The sensitivity of the vertical polarization brightness temperature to the sea surface wind speed is smaller than that of the horizontal polarization.(2)The retrieval error increases with Gaussian noise.The retrieval error of VR first increases and then decreases with increasing incidence angle,the retrieval error of HR gradually decreases with increasing incidence angle,and the retrieval error of AR first decreases and then increases with increasing incidence angle.(3)The retrieval error of AR is the lowest and it is necessary to retrieve the sea surface wind speed at a larger incidence angle for AR.
基金Supported by the China’s National Key Research and Development Projects(No.2016YFA0601803)the National Natural Science Foundation of China(Nos.41490641,41521091,U1606402)the Qingdao National Laboratory for Marine Science and Technology(No.2017ASKJ01)
文摘The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer (MABL) height front, with active warm and cold-ocean eddies around. The MABL has an obvious transitional structure along the strong SST front, with greater (lesser) heights over the north (south) side. The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies. The surface wind speed increases (decreases) about 0.32 (0.41) m/s and the MABL elevates (drops) approximate 55 (54) m per 1℃ of SST perturbation induced by warm (cold) eddies. The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL, which is confirmed by the linear relationships between the downwind (crosswind) SST gradient and wind divergence (curl).
文摘Extreme values of wind speed were studied based on the highly detailed ERA5 dataset covering the central part of the Kara Sea. Cases in which the ice coverage of the cells exceeded 15% were filtered. Our study shows that the wind speed extrema obtained from station observations, as well as from modelling results in the framework of mesoscale models, can be divided into two groups according to their probability distribution laws. One group is specifically designated as black swans, with the other referred to as dragons (or dragon-kings). In this study we determined that the data of ERA5 accurately described the swans, but did not fully reproduce extrema related to the dragons;these extrema were identified only in half of ERA5 grid points. Weibull probability distribution function (PDF) parameters were identified in only a quarter of the pixels. The parameters were connected almost deterministically. This converted the Weibull function into a one-parameter dependence. It was not clear whether this uniqueness was a consequence of the features of the calculation algorithm used in ERA5, or whether it was a consequence of a relatively small area being considered, which had the same wind regime. Extremes of wind speed arise as mesoscale features and are associated with hydrodynamic features of the wind flow. If the flow was non-geostrophic and if its trajectory had a substantial curvature, then the extreme velocities were distributed according to a rule similar to the Weibull law.
文摘Considering about the effect of whitecaps and foams on pulse-limited Radar Altimeters, an improved algorithm of retrieving sea surface wind speed is proposed in this paper. Firstly, a four-layer dielectric model is established in order to simulate an air-sea interface. Secondly, the microwave reflectivity of a sea surface covered by spray droplets and foams at 13.5 GHz is computed based on the established model. These computed results show that the effect of spray droplets and foams in high sea state conditions shall not be negligible on retrieving sea surface wind speed. Finally, compared with the analytical algorithms proposed by Zhao and some calculated results based on a three-layer dielectric model, an improved algorithm of retrieving sea surface wind speed is presented. At a high wind speed, the improved algorithm is in a better accord with some empirical algorithms such as Brown, Young ones and et al., and also in a good agreement with ZT and other algorithms at low wind speed. This new improved algorithm will be suitable not only for low wind speed retrieval, but also for high wind speed retrieval. Better accuracy and effectiveness of wind speed retrieval can also be obtained.
基金Research Grant Council under contract No.461907Innovation and Technology Commission under contract No.GHP/026/06+1 种基金partly by China Postdoctoral Science Foundation under contract No.2008041345 for ChengONR under contract NosN00014-05-1-0328 and N00014-05-1-0606 for Zheng
文摘The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) data in the coastal waters near Hong Kong during a period from October 2005 to July 2007. The retrieved wind speeds are evaluated by comparing with buoy measurements and the QuikSCAT (quick scatterometer) wind products. The results show that the CMOD4 model gives the best performance at wind speeds lower than 15 m/s. The correlation coefficients with buoy and QuikSCAT winds are 0.781 and 0.896, respectively. The root mean square errors are the same 1.74 m/s. Namely, the CMOD4 model is the best one for sea surface wind speed retrieval from ASAR data in the coastal waters near Hong Kong.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)
文摘The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite,launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm,the AMSR2 enables remote monitoring of geophysical parameters such as sea surface temperature,wind speed,water vapor,and liquid cloud water content. However,rain alters the properties of atmospheric scattering and absorption,which contaminates the brightness temperatures measured by the microwave radiometer. Therefore,it is difficult to retrieve AMSR2-derived sea surface wind speeds under rainfall conditions. Based on microwave radiative transfer theory,and using AMSR2 L1 brightness temperature data obtained in August 2012 and NCEP reanalysis data,we studied the sensitivity of AMSR2 brightness temperatures to rain and wind speed,from which a channel combination of brightness temperature was established that is insensitive to rainfall,but sensitive to wind speed. Using brightness temperatures obtained with the proposed channel combination as input parameters,in conjunction with HRD wind field data,and adopting multiple linear regression and BP neural network methods,we established an algorithm for hurricane wind speed retrieval under rainfall conditions. The results showed that the standard deviation and relative error of retrievals,obtained using the multiple linear regression algorithm,were 3.1 m/s and 13%,respectively. However,the standard deviation and relative error of retrievals obtained using the BP neural network algorithm were better(2.1 m/s and 8%,respectively). Thus,the results of this paper preliminarily verified the feasibility of using microwave radiometers to extract sea surface wind speeds under rainfall conditions.
基金The National Natural Science Foundation of China under contract No.41371355the Director Fund Project of Institute of Remote Sensing and Digital Earth of CAS under contract No.Y6SJ0600CX
文摘Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps(DDMs),whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds.However,the bistatic radar cross section(BRCS),which is strongly related to the sea surface roughness,is extensively used in radar.Therefore,a bistatic radar cross section(BRCS) map with a modified BRCS equation in a GNSS-R application is introduced.On the BRCS map,three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed.Airborne Hurricane Dennis(2005) GNSS-R data are then used.More than 16 000 BRCS maps are generated to establish GMFs of the three observables.Finally,the proposed model and classic one-dimensional delay waveform(DW) matching methods are compared,and the proposed model demonstrates a better performance for the high wind speed retrievals.
基金supported by grants from the MOST NBRPC(2009CB421401)CNNSF(41075063) and the CMA Institute of Urban Meteorology
文摘Daily observations of wind speed at 12 stations in the Greater Beijing Area during 1960–2008 were homogenized using the Multiple Analysis of Series for Homogenization method. The linear trends in the regional mean annual and seasonal (winter, spring, summer and autumn) wind speed series were-0.26,-0.39,-0.30,-0.12 and-0.22 m s-1 (10 yr)-1 , respectively. Winter showed the greatest magnitude in declining wind speed, followed by spring, autumn and summer. The annual and seasonal frequencies of wind speed extremes (days) also decreased, more prominently for winter than for the other seasons. The declining trends in wind speed and extremes were formed mainly by some rapid declines during the 1970s and 1980s. The maximum declining trend in wind speed occurred at Chaoyang (CY), a station within the central business district (CBD) of Beijing with the highest level of urbanization. The declining trends were in general smaller in magnitude away from the city center, except for the winter case in which the maximum declining trend shifted northeastward to rural Miyun (MY). The influence of urbanization on the annual wind speed was estimated to be about-0.05 m s-1 (10 yr)-1 during 1960–2008, accounting for around one fifth of the regional mean declining trend. The annual and seasonal geostrophic wind speeds around Beijing, based on daily mean sea level pressure (MSLP) from the ERA-40 reanalysis dataset, also exhibited decreasing trends, coincident with the results from site observations. A comparative analysis of the MSLP fields between 1966–1975 and 1992–2001 suggested that the influences of both the winter and summer monsoons on Beijing were weaker in the more recent of the two decades. It is suggested that the bulk of wind in Beijing is influenced considerably by urbanization, while changes in strong winds or wind speed extremes are prone to large-scale climate change in the region.
基金funding from the project “Future flooding risks at the Swedish Coast: Extreme situations in present and future climat”, Ref. No. P02/12 by Lansforsakringsbolagens Forskningsfondthrough the Swedish Civil Contingencies Agency (MSB) through the project “Hazard Support: Risk-based decision support for adaptation to future natural hazards”
文摘Mean sea level rise and climatological wind speed changes occur as part of the ongoing climate change and future projections of both variables are still highly uncertain. Here the Baltic Sea’s response in extreme sea levels to perturbations in mean sea level and wind speeds is investigated in a series of simulations with a newly developed storm surge model based on the nucleus for European modeling of the ocean(NEMO)-Nordic. A simple linear model with only two tunable parameters is found to capture the changes in the return levels extremely well. The response to mean sea level rise is linear and nearly spatially uniform, meaning that a mean sea level rise of 1 m increases the return levels by a equal amount everywhere. The response to wind speed perturbations is more complicated and return levels are found to increase more where they are already high. This behaviour is alarming as it suggests that already flooding prone regions like the Gulf of Finland will be disproportionally adversely affected in a future windier climate.
文摘This paper analyzes the sea surface backward thermal radiation data in the China Sea observed by the mmwave channel of FY3 MWRI, explains the reason for which the analysis method combined with multiple mmwave channels is conducive to wind inversion, uses the complex model of the two-scale randomly rough surface with foam scattering layer to calculate the backward heat emission, analyzes the different response characteristics of the thermal radiation characteristics of each channel with the change of the sea surface wind speed, and establishes the wind speed inversion model applying to the microwave radiometer, achieving better results than in previous studies. The sea surface medium-low wind speed precision standard deviation of new model reaches 1.2 m/s (0 - 15 m/s);the inversion strong wind data are consistent with the island fixed buoys data, and the global sea surface wind speed image schematic diagram is given.