期刊文献+
共找到807篇文章
< 1 2 41 >
每页显示 20 50 100
Characteristic of Fresh and Harden Properties of Polyvinyl Alcohol Fibre Reinforced Alkali Activated Composite
1
作者 Yiguang Wang Zhe Zhang Xun Zhang 《Journal of Renewable Materials》 SCIE EI 2023年第3期1321-1337,共17页
Fibre can enhance the mechanical properties of cement-based composites,but fibre also degrades their workability.However,the quantitative effects of fiber content and length-diameter ratio on alkali-activated material... Fibre can enhance the mechanical properties of cement-based composites,but fibre also degrades their workability.However,the quantitative effects of fiber content and length-diameter ratio on alkali-activated materials are still unclear.Various aspect ratio,volume fraction of polyvinyl alcohol fibre(PVAF),and various water-binder ratio were employed to prepare a total of 26 groups of fibre reinforced alkali-activated composite(FRAAC).The influence of PVAF fibre factor(product of fiber volume fraction and length-diameter ratio)on flowability,compactness,strength,and crack fractal dimension of FRAAC was researched.The influence of water-binder ratio on the plastic viscosity of FRAAC was more significant than that on the yield stress.When fibre factor was lower than critical value of 150,the influence of fibres could be overlooked.The reason was that the space between fibres was distant,so the flowability of FRAAC was not impacted by PVAF.At this time,fibres were challenging to restrict the cracks in matrix and increase their mechanical properties.When fibre factor was higher than critical value 150 and lower than density packing value 450,the flexural strength,compressive strength and crack fractal dimension of FRAAC were considerably enhanced,and the FRAAC could still flow easily under dead weight.When fibre factor were above 450,noteworthy fibre balling considerably decreased the flowability,leading to poor solidity and reduced compressive strength.Hence,the ideal content of PVAF in alkali activated composite is between 150/(l/d)and 450/(l/d). 展开更多
关键词 Alkali-activated composite fibre reinforced composite fibre factor FLOWABILITY strength fractal dimension
下载PDF
Materials Selection of Thermoplastic Matrices of Natural Fibre Composites for Cyclist Helmet Using an Integration of DMAIC Approach in Six Sigma Method Together with Grey Relational Analysis Approach
2
作者 N.A.Maidin S.M.Sapuan +1 位作者 M.T.Mastura M.Y.M.Zuhri 《Journal of Renewable Materials》 SCIE EI 2023年第5期2381-2397,共17页
Natural fibre reinforced polymer composite(NFRPC)materials are gaining popularity in the modern world due to their eco-friendliness,lightweight nature,life-cycle superiority,biodegradability,low cost,and noble mechani... Natural fibre reinforced polymer composite(NFRPC)materials are gaining popularity in the modern world due to their eco-friendliness,lightweight nature,life-cycle superiority,biodegradability,low cost,and noble mechanical properties.Due to the wide variety of materials available that have comparable attributes and satisfy the requirements of the product design specification,material selection has become a crucial component of design for engineers.This paper discusses the study’s findings in choosing the suitable thermoplastic matrices of Natural Fibre Composites for Cyclist Helmet utilising the DMAIC,and GRA approaches.The results are based on integrating two decision methods implemented utilising two distinct decision-making approaches:qualitative and quantitative.This study suggested thermoplastic polyethylene as a particularly ideal matrix in composite cyclist helmets during the selection process for the best thermoplastic matrices material using the 6σtechnique,with the decision based on the highest performance,the lightest weight,and the most environmentally friendly criteria.The DMAIC and GRA approach significantly influenced the material selection process by offering different tools for each phase.In the future study,selection technique may have been more exhaustive if more information from other factors had been added. 展开更多
关键词 Material selection DMAIC Six Sigma grey relational analysis thermoplastic matrices natural fibre polymerreinforced composites
下载PDF
Manufacturing Titanium Metal Matrix Composites by Consolidating Matrix Coated Fibres 被引量:3
3
作者 Hua-Xin PENGDepartment of Aerospace Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第5期647-651,共5页
Titanium metal matrix composites (TiMMCs) reinforced by continuous silicon carbide fibres are being developed for aerospace applications. TiMMCs manufactured by the consolidation of matrix-coated fibre (MCF) metho... Titanium metal matrix composites (TiMMCs) reinforced by continuous silicon carbide fibres are being developed for aerospace applications. TiMMCs manufactured by the consolidation of matrix-coated fibre (MCF) method offer optimum properties because of the resulting uniform fibre distribution, minimum fibre damage and fibre volume fraction control. In this paper, the consolidation of Ti-6Al-4V matrix-coated SiC fibres during vacuum hot pressing has been investigated. Experiments were carried out on multi-ply MCFs under vacuum hot pressing (VHP). In contrast to most of existing studies, the fibre, arrangement has been carefully controlled either in square or hexagonal arrays throughout the consolidated sample. This has enabled the dynamic consolidation behaviour of MCFs to be demonstrated by eliminating the fibre re-arrangement during the VHP process. The microstructural evolution of the matrix coating was reported and the deformation mechanisms involved were discussed. 展开更多
关键词 Titanium matrix composites Matrix-coated fibres Vacuum hot pressing MICROSTRUCTURE Dynamic denslfication
下载PDF
Green Composite Material Made from Typha latifolia Fibres Bonded with an Epoxidized Linseed Oil/Tall Oil-Based Polyamide Binder System 被引量:3
4
作者 Günter Wuzella Arunjunai Raj Mahendran Andreas Kandelbauer 《Journal of Renewable Materials》 SCIE EI 2020年第5期499-512,共14页
Here,we report the mechanical and water sorption properties of a green composite based on Typha latifolia fibres.The composite was prepared either completely binder-less or bonded with 10%(w/w)of a bio-based resin whi... Here,we report the mechanical and water sorption properties of a green composite based on Typha latifolia fibres.The composite was prepared either completely binder-less or bonded with 10%(w/w)of a bio-based resin which was a mixture of an epoxidized linseed oil and a tall-oil based polyamide.The flexural modulus of elasticity,the flexural strength and the water absorption of hot pressed Typha panels were measured and the influence of pressing time and panel density on these properties was investigated.The cure kinetics of the biobased resin was analyzed by differential scanning calorimetry(DSC)in combination with the iso-conversional kinetic analysis method of Vyazovkin to derive the curing conditions required for achieving completely cured resin.For the binderless Typha panels the best technological properties were achieved for panels with high density.By adding 10%of the binder resin the flexural strength and especially the water absorption were improved significantly. 展开更多
关键词 Natural fibre composite Cattails Typha latifolia epoxidized linseed oil cure kinetics iso-conversional kinetic analysis
下载PDF
Tensile Properties and Fractographic Analysis of Low Density Polyethylene Composites Reinforced with Chemically Modified Keratin-Based Biofibres
5
作者 Isiaka Oluwole Oladele Jimmy Lolu Olajide +1 位作者 Okikiola Ganiyu Agbabiaka Olawale Opeyemi Akinwumi 《Journal of Minerals and Materials Characterization and Engineering》 2015年第4期344-352,共9页
This research has investigated the tensile properties and fractography of animal fibre-reinforced low density polyethylene composites. The composites were synthesized by hot compression moulding using chemically modif... This research has investigated the tensile properties and fractography of animal fibre-reinforced low density polyethylene composites. The composites were synthesized by hot compression moulding using chemically modified white and black cow hair biofibres as the reinforcing phase of composites. Alkaline solutions of varying molarities were used to prepare the chemical treatments in this present study. Tensile properties of the developed composites were evaluated based on molarities of chemical treatment and % fibre loading. Scanning electron microscopy was used to characterize the morphologies of the fractured surfaces of composites. Obtained tensile test results revealed significant enhancement in the tensile properties of composites, with the optimum combination of tensile properties presented by 2 wt% white cow hair biofibre reinforcement treated with 0.15 M sodium hydroxide. Observations from the fractographic analysis of the developed composites revealed shearing of the polymer matrix at the fibre-matrix interface and no fibre pullout behaviour. 展开更多
关键词 ANIMAL fibrE ALKALINE Treatment fibre-Matrix Interface Mechanical BEHAVIOUR Polymer MATRIX composites
下载PDF
Evaluation and Optimization of Tensile Strength Responses of Coir Fibres Reinforced Polyester Matrix Composites (CFRP) Using Taguchi Robust Design
6
作者 Ugochukwu Chuka Okonkwo Christian Ebele Chukwunyelu +1 位作者 Bright Uchenna Oweziem Austine Ekuase 《Journal of Minerals and Materials Characterization and Engineering》 2015年第4期225-236,共12页
In this study, control factors which included aspect ratio of fibres, volume fraction of fibres and fibres orientation were the focus for determining the optimum tensile strengths of coir fibres reinforced polyester r... In this study, control factors which included aspect ratio of fibres, volume fraction of fibres and fibres orientation were the focus for determining the optimum tensile strengths of coir fibres reinforced polyester resin composites. After using Archimedes principle to determine the volume fraction of fibres, tensile test was conducted on the samples of treated and untreated coir fibres reinforced polyester resin composites, respectively. For the optimum properties to be obtained, a Universal Testing Machine-TUE-C-100 was used for the conducted tensile tests which established the levels of control factors settings for quality characteristics needed to optimize the mechanical properties being investigated. Applying Taguchi robust design technique for the greater-the-better, the highest signal-to-noise ratio (S/N ratio) for the quality characteristics being investigated was obtained employing Minitab 16 software. The optimum values of the control factors were established for treated coir fibres reinforced polyester resin composites and untreated coir fibres reinforced polyester resin composites. The treated coir fibres reinforced polyester matrix composite has the optimum tensile strength of 42.7 N/mm2 while the untreated coir fibres reinforced matrix composite has the optimum tensile strength of 21.9 N/mm2. The reinforcement combinations of control factors contribute greatly to the tensile properties, and the treated coir fibres reinforced polyester composites are stronger in tension than the untreated coir fibres reinforced polyester composites. 展开更多
关键词 Taguchi COIR fibres TENSILE Strength Control Factors composites
下载PDF
Ballistic impact response of flexible and rigid UHMWPE textile composites:Experiments and simulations
7
作者 Hongxu Wang Dakshitha Weerasinghe +3 位作者 Paul J.Hazell Damith Mohotti Evgeny V.Morozov Juan P.Escobedo-Diaz 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期37-53,共17页
This study elaborates on the effects of matrix rigidity on the high-velocity impact behaviour of UHMWPE textile composites using experimental and numerical methods.Textile composite samples were manufactured of a plai... This study elaborates on the effects of matrix rigidity on the high-velocity impact behaviour of UHMWPE textile composites using experimental and numerical methods.Textile composite samples were manufactured of a plain-weave fabric(comprising Spectra?1000 fibres)and four different matrix materials.High-velocity impact tests were conducted by launching a spherical steel projectile to strike on the prepared samples via a gas gun.The experimental results showed that the textile composites gradually changed from a membrane stretching mode to a plate bending mode as the matrix rigidity and thickness increased.The composites deformed in the membrane stretching mode had higher impact resistance and energy absorption capacity,and it was found that the average energy absorption per ply was much higher in this mode,although the number of broken yarns was smaller in the perforated samples.Moreover,the flexible matrix composites always had higher perforation resistance but larger deformation than the rigid matrix counterparts in the tested thickness and velocity range.A novel numerical modelling approach with enhanced computational efficiency was proposed to simulate textile composites in mesoscale resolution.The simulation results revealed that stress and strain development in the more rigid matrix composite was localised in the vicinity of the impact location,leading to larger local deformation and inferior perforation resistance. 展开更多
关键词 Impact behaviour Textile composite UHMWPE fibre Energy absorption Finite element analysis
下载PDF
SOLUTION OF DIFFERENT HOLES SHAPE BORDERS OF FIBRE REINFORCED COMPOSITE PLATES BY INTEGRAL EQUATIONS 被引量:3
8
作者 LI Cheng ZHENG Yanping CHEN Zhongzhong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期23-27,共5页
Accurate boundary conditions of composite material plates with different holes are founded to settle boundary condition problems of complex holes by conformal mapping method upon the nonhomogeneous anisotropic elastic... Accurate boundary conditions of composite material plates with different holes are founded to settle boundary condition problems of complex holes by conformal mapping method upon the nonhomogeneous anisotropic elastic and complex function theory. And then the two stress functions required were founded on Cauchy integral by boundary conditions. The final stress distributions of opening structure and the analytical solution on composite material plate with rectangle hole and wing manholes were achieved. The influences on hole-edge stress concentration factors are discussed under different loads and fiber direction cases, and then contrast calculates are carried through FEM. 展开更多
关键词 fibre reinforced composite Accurate boundary conditions Mapping functions Complex hole shape Integral equations
下载PDF
Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application 被引量:9
9
作者 R.YAH AYA S.M.SAPUAN +2 位作者 M.JAWAID Z.LEMAN E.S.ZAINUDIN 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第1期52-58,共7页
This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength o... This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength of woven kenaf hybrid composite is almost 20.78% and 43.55% higher than that of UD and mat samples respectively. Charpy impact strength of woven kenaf composites is 19.78% and 52.07% higher than that of UD and mat kenaf hybrid composites respectively. Morphological examinations were carried out using scanning electron microscopy. The results of this study indicate that using kenaf in the form of woven structure could produce a hybrid composite material with high tensile strength and impact resistance properties. 展开更多
关键词 芳纶复合材料 材料力学性能 纤维取向 红麻 应用 剥落 编织复合材料 扫描电子显微镜
下载PDF
Analysis of Mechanical Properties of Injection Molded Short Glass Fibre (SGF)/Calcite/ABS Composites 被引量:2
10
《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第5期389-396,共8页
Acrylonitrile-butadiene-Styrene (ABS), with and without calcium carbonate (calcite) particles,was used as the matrix for reinforcement with as-received short-glass fibres (were originallytreated by the manufacturer) a... Acrylonitrile-butadiene-Styrene (ABS), with and without calcium carbonate (calcite) particles,was used as the matrix for reinforcement with as-received short-glass fibres (were originallytreated by the manufacturer) and sized short-glass fibres with two amino-silane coupling agents.The calcite particle content is 0, 11.7 and 23.5 vol. pct for the matrices. The glass fiber contentis 0, 10 and 15 vol. pct. The matrix materials and corresponding composites were compoundedusing a twin screw extruder and dumbbell-shaped tensile bars were prepared with an injectionmolding process. The tensile and flexural properties as well as the unnotched and notchedCharpy impact energies of short glass fibre/calcite/ABS composites were studied in this paper.The effects of fibres, fibre surface treatments and particles on these mechanical properties ofthe composites were discussed in detail. An importarit information was obtained, which is thatthe tensile and flexural strengths of hybrid SGF/calcite/ABS composites are the same as thoseof corresponding fibre composites when the ratio of the interfacial adhesion strength betweenparticles and matrix to that between fibres and matrix is higher than certain value. otherwise theformer are lower than the latter. 展开更多
关键词 ABS Calcite/ABS composites SGF Analysis of Mechanical Properties of Injection Molded Short Glass fibre
下载PDF
A Review on Development of Natural Fibre Composites for Construction Applications 被引量:1
11
作者 Nahiyan Al-Azad Muhammad Fazli Mohamad Asril Mohd. Kamal Mohd. Shah 《Journal of Materials Science and Chemical Engineering》 2021年第7期1-9,共9页
This paper is a review of the past researcher of feasibility of the usage of natural fibre composites in various civil engineering applications and also the advantages and limitations of natural fibres reinforced comp... This paper is a review of the past researcher of feasibility of the usage of natural fibre composites in various civil engineering applications and also the advantages and limitations of natural fibres reinforced composites. As the world is gathering attention towards the renewable resources for environmental purposes, studies of natural fibre have been increasing further due to the application of natural fibre throughout various industries such as aerospace, automobiles and construction sectors. This paper is started with brief information regarding the natural fibre composite materials, the natural fibre composite for structural and infrastructure applications, its advantages and also its limitations. With their unique and wide range of variability, natural fibre composites could emerge as a new alternative engineering material that can substitute the use of synthetic fibre composites. 展开更多
关键词 Natural fibre Natural fibre composites CONSTRUCTION INFRASTRUCTURE
下载PDF
Overview of Jute Fibre as Thermoplastic Matrix Polymer Reinforcement
12
作者 Tezara Cionita Mohammad Hazim Mohamad Hamdan +9 位作者 Januar Parlaungan Siregar Deni Fajar Fitriyana Ramli Junid Wong Ling Shing Jamiluddin Jaafar Agustinus Purna Irawan Teuku Rihayat Rifky Ismail Athanasius Priharyoto Bayuseno Emilianus Jehadus 《Journal of Renewable Materials》 EI CAS 2024年第3期457-483,共27页
Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals(SDGs).Due to their renewable resources and biodegradability,natural fiberrei... Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals(SDGs).Due to their renewable resources and biodegradability,natural fiberreinforced composites have been investigated as a sustainable alternative to synthetic materials to reduce the usage of hazardous waste and environmental pollution.Among the natural fibre,jute fibre obtained from a bast plant has an increasing trend in the application,especially as a reinforcement material.Numerous research works have been performed on jute fibre with regard to reinforced thermoset and thermoplastic composites.Nevertheless,current demands on sustainable materials have required new developments in thermoplastic composites.In this paper,the author reviews jute plants as reinforcement materials for thermoplastic matrix polymers.This review provides an overview of the sustainability of jute plants as reinforcement material for thermoplastic matrix polymers.The overview on jute based thermoplastic composites focused on the thermal behavior and mechanical properties.Apart from physical,chemical,and mechanical properties,the study also covers the current and perspectives for future research challenges faced by the researchers on jute fibre reinforced thermoplastic composites. 展开更多
关键词 Jute fibre sustainable development goals(SDGs) natural fibre THERMOPLASTIC composite sustainable manufacturing
下载PDF
The Failure Mechanisms of Ultra-high Molecular Weight Polyethylene Fibre Composites Under In-plane Compression
13
作者 刘国亮 张玉武 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期240-247,共8页
The in-plane compressive characteristics of the ultra-high molecular weight polyethylene(UHMWPE)fibre(Dyneema█)reinforced composites,both in 0/90°and±45°fibre orientations with respect to the loading d... The in-plane compressive characteristics of the ultra-high molecular weight polyethylene(UHMWPE)fibre(Dyneema█)reinforced composites,both in 0/90°and±45°fibre orientations with respect to the loading direction,have been investigated.The composite made from unidirectional high modulus fibres(volume fraction 83%)and low strength polyurethane matrix(volume fraction 17%)is layered in an orthogonally alternating manner.The different failure mechanisms for the composites with 0/90°and±45°fibre orientations have been detected with the methods of experimental measurement,SEM observation and theoretical analysis.The composites specimens of 0/90°fibre orientation failed with macro-buckling of the high-modulus UHMWEP fibre layers with the matrix damage,whereas the specimens of±45°fibre orientation failed with the shearing of the soft matrix.Hence,the composite specimens in 0/90°fibre orientation had higher stiffness as well as compressive strength than those in±45°fibre orientation.The failure criteria of the composites under in-plane compression was employed to characterize the failure mechanism.Compared with the traditional thermoset matrix,the soft thermoplastic matrix leads to lower strength and higher failure strain of fibre reinforced composites under in-plane compression.In addition,the composite specimens cut by waterjet machine exhibited higher stress levels than those cut by bandsaw that introduced more initial imperfections with the temperature rising and tensile shocking.The comparison between the methodologies for cutting the tough composites can provide a valuable suggestion to obtain required composite structures without reducing the mechanical properties. 展开更多
关键词 UHMWPE fibrE composites IN-PLANE compression FAILURE mechanisms fibrE BUCKLING matrix SHEARING
下载PDF
Vertex angles effects in the energy absorption of axially crushed kenaf fibre-epoxy reinforced elliptical composite cones
14
作者 Mohamed Alkateb S.M.Sapuan +2 位作者 Z.Leman M.R.Ishak Mohammad Jawaid 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期327-335,共9页
Experimental quasi-static crushing tests were conducted by using a universal testing machine format kenaf-epoxy composite elliptical cones. The work focused on the vertex angle's effects on energy absorption capab... Experimental quasi-static crushing tests were conducted by using a universal testing machine format kenaf-epoxy composite elliptical cones. The work focused on the vertex angle's effects on energy absorption capability; the vertex angles vary from 0° to 24° in 6 increments. The failure modes of the kenaf fibre epoxy composite elliptical cones were observed utilising delegate photos taken during the quasistatic crushing test. Load-deformation curves and deformation histories of typical specimens are presented and discussed. Moreover, the effects of cone vertex angles on the load carrying capacity and the energy absorption capability are also discussed. The results show that the energy absorption abilities significantly influence the ellipticity vertex angle as the load carrying capacity. We concluded that the quasi-static axial crushing behaviour of elliptical mat laminated composite cones is strongly affected by their structural geometry and the specific energy absorbed by the composite elliptical cones with vertex angles of 6°, 12°, 18°, and 24°, which is more than an elliptical cone with the vertex angle of 0°(the elliptical tube) at any given deformation. However, the specific energy absorption for the elliptical composite cone showed a positive correlation, i.e., the more the angle increased, the more energy was absorbed. In this regard, an elliptical composite cone with a 24° angle exhibited the best energy absorption capability. 展开更多
关键词 KENAF fibres composite materials Elliptical cone VERTEX angle Collapsible Energy absorption
下载PDF
ANISOTROPY OF THE KERATIN FIBRE COMPOSITE
15
作者 陶肖明 R.Postle 《Journal of China Textile University(English Edition)》 EI CAS 1989年第2期1-10,共10页
This paper presents a composite model of the natural keratin fibres (wool and hair) whichconsists essentially of isotropic viscoelastic filaments, oriented parallel to each other in the fibreaxial direction, embedded ... This paper presents a composite model of the natural keratin fibres (wool and hair) whichconsists essentially of isotropic viscoelastic filaments, oriented parallel to each other in the fibreaxial direction, embedded in an isotropic viscoelastic matrix. The model accurately fits the exper-imental data on the fibre axial stress relaxation moduli and provides upper and lower bounds forthe initial/final values for the fibre transverse tensile and shear stress relaxation moduli andtransverse Poisson’s ratio. The partially water penertrable filament phase of the composite modelis identified as the microfibrils in the fine structure of keratin. The strong anisotropy of keratinsin mechanical properties and hygral/thermal expansion is analyzed in terms of composite struc-ture and mechanical as well as the thermal/hygral properties of the two constituent phases. 展开更多
关键词 KERATIN composite MATERIALS fibrE property ANISOTROPIC MATERIALS fibrE structure
下载PDF
CURE OF PREPOLYMER BASED ON METHYL METHACRYLATE/STYRENE AND OPTICAL PROPERTY AND HYDROTHRMAL STABILITY OF TRANSPARENT FIBRE—REINFORCED THERMOPLASTIC COPOLYMER COMPOSITES
16
作者 赵方鸣 郁轶澄 刘雄亚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1994年第2期42-49,共8页
: Copolymers used for transparent fibre glass-reinforced thermoplastic composite -were prepared from methyl methacrylate (.MMA) and styrene (St). Composites containing 20~25 ivt% glass fibre and 0. 7 mm in thickness h... : Copolymers used for transparent fibre glass-reinforced thermoplastic composite -were prepared from methyl methacrylate (.MMA) and styrene (St). Composites containing 20~25 ivt% glass fibre and 0. 7 mm in thickness had an overall optical transmission of 88 ~90%. The gel time and cure time of the prepolymers from MM A and St decreased markedly ivith addition of tiie two linear unsaturated polyesters (.LUPE) and curing process of composite laminate became controlling easily-The effect of the concentration of LUPE on thermal stability of copolymers 晅he optical properties and the hydrothermal sta-bility of composites was investigated by comparing with those of trans-parent unsaturated composites . 展开更多
关键词 transparent fibre composites MM A STYRENE copoly-mer CURE hydrothermul stability
下载PDF
Influence of an Optimized Fibre Coating on Interfacial and Mechanical Properties of Glass Fibre/Polypropylene Composites
17
作者 余剑英 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第1期62-65,共4页
The influence of pretreatment of fibre on interfacial and mechanical properties of glass fibre/ polypropylene composites was investigated. Firstly, the glass fibres were coated with the blends of m-IPP (maleic anhydri... The influence of pretreatment of fibre on interfacial and mechanical properties of glass fibre/ polypropylene composites was investigated. Firstly, the glass fibres were coated with the blends of m-IPP (maleic anhydride grafting isotatic polypropylene ) and m-APP ( maleic anhydride grafting amorphous polypropylene) in different, ratios. Secondly, the interfaced reaction of the coated composites was analysed by FTIR, which shows that the interfacial chemical reaction between m-IPP/m-APP in the fibre coating and the fibre surface- bound coupling agent is in existence. Thirdly, the microstructure of the coated composites wax studied by SEM. The results indicate that the coating treatment is effective on improving interfacial adhesion of the, fibre-matrix and the right amount of m-APP added to the coal impels the plastic deformation surrounding the point of cracks , which makes cracks turn to region and prevents from further interface debonding. Lastly, the mechanical properties were evaluated by measurement, of the flexural strength and impact strength of the composites. It was found that, the flexural strength and impact strength of the composites with coating fibre are higher than those of uncoating fibre composite. The results of these investigations draw the conclusion that the pretreatment of fibre with m-IPP/m-APP blends can form an optimize interlayer between the fibre and the PP matrix, which improves both the strength and lough-ness of the composites. 展开更多
关键词 glass fibre surface treatment interfare thermoplastic composites
下载PDF
A STUDY OF INTERFACES OF COMPOSITES BY MEANS OF OPTICAL FIBRE SENSING TECHNTIQUE
18
作者 闻荻江 孙成林 周崇华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1992年第4期1-10,共10页
Fibre stress of glass fibre reinforced polymeric copmosites on load is determined by using optical fibre as model fiber and by means of laser interference method. In addition, the origination of fibre stress during mo... Fibre stress of glass fibre reinforced polymeric copmosites on load is determined by using optical fibre as model fiber and by means of laser interference method. In addition, the origination of fibre stress during moulding process of composites and the relation between fiber stress of loaded composites and external stress are examined. The experiments show that fibre stress is related to molecular structure of inter facial materials and structure of inter facial layers. When stress is transferred from matrix to fibre, each inter facial layer has different stress gradient and deformability. This property can be characterized by introducing an inter facial stress transfer coefficient k to the two-phase model. 展开更多
关键词 INTERFACE compositeS stress transfer optical fibre laser interference method
下载PDF
APPLICATION OF COMPOSITE FIBRE TO HIGH ELASTIC KNITTED FABRIC
19
作者 张佩华 《Journal of China Textile University(English Edition)》 EI CAS 1996年第2期72-76,共5页
The knitting condition and technology for PBT/PET composite fibre on loop wheel machine as well as the effect of knitted fabric structure and stitch parameter are discussed in this paper. The properties of high elasti... The knitting condition and technology for PBT/PET composite fibre on loop wheel machine as well as the effect of knitted fabric structure and stitch parameter are discussed in this paper. The properties of high elastic plain knitted fabrics are also discussed. 展开更多
关键词 composite fibrE KNITTED fabries EXTENSIBILITY elasticity.
下载PDF
COMPUTER SIMULATION OF CREEP DAMAGE AT CRACK TIP IN SHORT FIBRE COMPOSITES
20
作者 张双寅 蔡良武 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1994年第3期282-288,共7页
Creep damage at crack tip in short fibre composites has been sim- ulated by using the finite element method(FEM).The well-known Schapery non- linear viscoelastic constitutive relationship was used to characterize time... Creep damage at crack tip in short fibre composites has been sim- ulated by using the finite element method(FEM).The well-known Schapery non- linear viscoelastic constitutive relationship was used to characterize time-dependent behaviour of the material.A modified recurrence equation was adopted to accelerate the iteration.Kachanov-Rabotnov's damage evolution law was employed.The growth of the damage zone with time around the crack tip was calculated and the results were shown with the so-called 'digit photo',which was produced by the printer. 展开更多
关键词 creep damage VISCO-ELASTICITY finite element method short fibre composite computer simulation
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部