In estuarine and coastal areas, the seabed is in a constant process of dynamic change under marine conditions.Seabed sediment erosion and resuspension are important processes that safely control the geological environ...In estuarine and coastal areas, the seabed is in a constant process of dynamic change under marine conditions.Seabed sediment erosion and resuspension are important processes that safely control the geological environment. Field tripod observations conducted in the Jiaozhou Bay in China are reported, to investigate the effects of hydrodynamic conditions on the erosion and resuspension processes of the seabed. The observational results show that the maximum shear stress created by tidal currents can reach 0.35 N/m2, which is higher than the wave-induced shear stress during fair weather conditions. A seabed erosion frequently occurs during the flood tide, whereas a seabed deposition occurs during ebb tide. Waves can produce a bottom shear stress approximately equivalent to that induced by currents when the local wind reaches Force 4 with a speed of 5 m/s.When the wind reaches 7 m/s and the significant wave height reaches 26 cm, waves play a more significant role than currents in the dynamic processes of the seabed sediment resuspension and lead to a high value of turbidity that is approximately two to eight times higher than that in fair weather. These analyses clearly illustrate that periodic current-induced sediment erosion and resuspension are dominant in fair weather, whereas episodic high waves are responsible for significant sediment resuspension. Additional work is needed to establish a more thorough understanding of the mechanisms of sediment dynamics in the Jiaozhou Bay.展开更多
The seabed scouring and silting are very important to the construction of port and waterway engineering. Seabed deposition and erosion change is complicated due to the influence of sediment supply, human activities an...The seabed scouring and silting are very important to the construction of port and waterway engineering. Seabed deposition and erosion change is complicated due to the influence of sediment supply, human activities and other factors. The Yangshan Deepwater Port is the new deep water harbor, which is an important part of the Shanghai International Shipping Service Center. Its construction has received much attention. At present, the water depth from the 1 st to the 3 rd harbor district is currently suitable under regular dredging and tidal current action. The fourth harbor district will be built in the world’s largest fully-automated deep water wharf. In the study, bathymetry change of the entire sea area of the Yangshan Deepwater Port and the 4 th harbor district(i.e.,Phase IV project) waters were analyzed quantitatively using multiyear bathymetric, hydrological and sediment data. The results show that from 1998 to 2010, seabed changes are characterized by large volumes of erosion and sedimentation, which the southern part was deposited and the northern part was eroded in the inner harbor waters, but the seabed of the Kezhushan inlet was eroded. Seabed changes of Phase IV project waters generally show a scour tendency in recent few years with the annual scour rate about 0.7 m. Among the many factors, the existence of Kezhushan inlet and its influence of the western water flow play an important positive role in water depth changes under the ebb tide action.展开更多
Assume that the Tonglu Canal would be widened and deepened in which a water lock is constructed atthe river side, and made open to the sea side. The canal's planned control dimensions are determined, and the erosi...Assume that the Tonglu Canal would be widened and deepened in which a water lock is constructed atthe river side, and made open to the sea side. The canal's planned control dimensions are determined, and the erosionand siltation characteristics along the river (totally 81. 8 km) are analyzed by the numerical calculation of one-dimen-sional unsteady flow and the relative standards. According to the data of the evolution, hydrology and sediment inthe Xiaomiaohong Waterway, it is found reasonable to select the channel near the Xingang Gate as the second sea-entering approach. This paper is helpful in planning and designing the approach.展开更多
The initial state of the Oued Beht watershed (430,728 ha) is characterized by a socio-ecological vulnerability associated to the water erosion risk. Especially, the consequences are chained and the soil loss alters it...The initial state of the Oued Beht watershed (430,728 ha) is characterized by a socio-ecological vulnerability associated to the water erosion risk. Especially, the consequences are chained and the soil loss alters its hydrological behavior and its ability to protect functional and structural challenges (good land, El Kansra dam, agricultural activities). In this perspective, this study suggests a methodology, reproducible and generalizable, to assess the natural water erosion risk (R). The approach used is based on spatial processing technology of information to develop a spatial database and geographic information system (GIS) concerning biophysical and?topoclimatic parameters in the Oued Beht watershed. Thus, the risk analysis is obtained by combining thematic maps of Susceptibility (S) and potential Consequences (C). Although, the spatial analysis of maps obtained reveals the extent of susceptibility involving land degradation, with the potential risks, which generated a decrease in the storage capacity of El Kansra dam (?3.03 Mm3/year). The results show that erosion is active on more than three quarters (3/4) of the watershed, and a considerable loss of land with 8.36 Million tonnes per year. In this way, flood analysis and study of?hydrometeorological events identified the vulnerability of flood sites (hot-spot) contributing at 77%?of El Kansra siltation dam. Therefore, the consequence assessment is obtained by identifying risk elements and estimating potential damage coefficient, which represents the financial gap flow affecting the socio-economic context due to the erosion impacts.展开更多
The rotary ring flume is used to study the silty sand movement in a periodic alternating current.Characteristics of sediment movement of different coasts in the tidal current are summarized.More detailed analysis of e...The rotary ring flume is used to study the silty sand movement in a periodic alternating current.Characteristics of sediment movement of different coasts in the tidal current are summarized.More detailed analysis of erosion-sedimentation function in a numerical simulation is made.The equilibrium sediment concentration is advanced.Based on the equilibrium sediment concentration,the seabed erosion-sedimentation index is derived and the seabed erosion-sedimentation calculation is analyzed.The seabed erosion-sedimentation index is used to calculate the seabed evolution of Yangshan sea area and a good agreement with field measurements is obtained.展开更多
Meghadrigedda, a non-perennial drainage system is one of the major water resources of Vishakhapatnam city located in the northern coastal region of Andhra Pradesh, India. It traverses through the hilly terrain of East...Meghadrigedda, a non-perennial drainage system is one of the major water resources of Vishakhapatnam city located in the northern coastal region of Andhra Pradesh, India. It traverses through the hilly terrain of Eastern GhatMobile Belt (EGMB) characterized by khondalitic rock formations. Excessive siltation scenario aggravated due to soil erosion in its catchment is threatening the very existence of Meghadrigedda reservoir. In order to assess the intensity of soil erosion as well as silt deposition in the reservoir, an integrated study has been undertaken which takes into consideration various topographic, morphological, soil, and land use/land cover characteristics of the basin. The study aims at identification and mapping of erosion prone zones with respect to silt deposition using remote sensing and GIS techniques.Alteration in human induced land use practices in its catchment due to rapid growth in population, urbanization and industrialization are found to be of prime reasons for various forms of erosion. The study has noticed that various forms of erosion like sheet, gully and stream erosion are responsible for the siltation at large scale which is causing reduction of its designed storage capacity by 40%. Various sub-watersheds of the basin have been prioritized on the basis of erosion intensity for suggesting various mitigation measures like check-dam construction, afforestation etc. to protect the reservoir from the silting problem.展开更多
基金The National Natural Science Foundation of China under contract Nos 41402253,41427803 and 41372287the Project of Qingdao National Laboratory for Marine Science and Technology under contract No.QNLM2016ORP0110
文摘In estuarine and coastal areas, the seabed is in a constant process of dynamic change under marine conditions.Seabed sediment erosion and resuspension are important processes that safely control the geological environment. Field tripod observations conducted in the Jiaozhou Bay in China are reported, to investigate the effects of hydrodynamic conditions on the erosion and resuspension processes of the seabed. The observational results show that the maximum shear stress created by tidal currents can reach 0.35 N/m2, which is higher than the wave-induced shear stress during fair weather conditions. A seabed erosion frequently occurs during the flood tide, whereas a seabed deposition occurs during ebb tide. Waves can produce a bottom shear stress approximately equivalent to that induced by currents when the local wind reaches Force 4 with a speed of 5 m/s.When the wind reaches 7 m/s and the significant wave height reaches 26 cm, waves play a more significant role than currents in the dynamic processes of the seabed sediment resuspension and lead to a high value of turbidity that is approximately two to eight times higher than that in fair weather. These analyses clearly illustrate that periodic current-induced sediment erosion and resuspension are dominant in fair weather, whereas episodic high waves are responsible for significant sediment resuspension. Additional work is needed to establish a more thorough understanding of the mechanisms of sediment dynamics in the Jiaozhou Bay.
基金The Fund of Tianjin Research Institute of Water Transport Engineering of China under contract Nos TKS180101,TKS170202 and TKS150207the National Natural Science Foundation of China under contract Nos 51509120 and 51779112+1 种基金the Shanghai Science and Technology Committee under contract No.15DZ1202300the Tianjin Science and Technology Plan Innovation Platform and Talent Special Fund Project under contract No.16PTSYJC00190
文摘The seabed scouring and silting are very important to the construction of port and waterway engineering. Seabed deposition and erosion change is complicated due to the influence of sediment supply, human activities and other factors. The Yangshan Deepwater Port is the new deep water harbor, which is an important part of the Shanghai International Shipping Service Center. Its construction has received much attention. At present, the water depth from the 1 st to the 3 rd harbor district is currently suitable under regular dredging and tidal current action. The fourth harbor district will be built in the world’s largest fully-automated deep water wharf. In the study, bathymetry change of the entire sea area of the Yangshan Deepwater Port and the 4 th harbor district(i.e.,Phase IV project) waters were analyzed quantitatively using multiyear bathymetric, hydrological and sediment data. The results show that from 1998 to 2010, seabed changes are characterized by large volumes of erosion and sedimentation, which the southern part was deposited and the northern part was eroded in the inner harbor waters, but the seabed of the Kezhushan inlet was eroded. Seabed changes of Phase IV project waters generally show a scour tendency in recent few years with the annual scour rate about 0.7 m. Among the many factors, the existence of Kezhushan inlet and its influence of the western water flow play an important positive role in water depth changes under the ebb tide action.
文摘Assume that the Tonglu Canal would be widened and deepened in which a water lock is constructed atthe river side, and made open to the sea side. The canal's planned control dimensions are determined, and the erosionand siltation characteristics along the river (totally 81. 8 km) are analyzed by the numerical calculation of one-dimen-sional unsteady flow and the relative standards. According to the data of the evolution, hydrology and sediment inthe Xiaomiaohong Waterway, it is found reasonable to select the channel near the Xingang Gate as the second sea-entering approach. This paper is helpful in planning and designing the approach.
文摘The initial state of the Oued Beht watershed (430,728 ha) is characterized by a socio-ecological vulnerability associated to the water erosion risk. Especially, the consequences are chained and the soil loss alters its hydrological behavior and its ability to protect functional and structural challenges (good land, El Kansra dam, agricultural activities). In this perspective, this study suggests a methodology, reproducible and generalizable, to assess the natural water erosion risk (R). The approach used is based on spatial processing technology of information to develop a spatial database and geographic information system (GIS) concerning biophysical and?topoclimatic parameters in the Oued Beht watershed. Thus, the risk analysis is obtained by combining thematic maps of Susceptibility (S) and potential Consequences (C). Although, the spatial analysis of maps obtained reveals the extent of susceptibility involving land degradation, with the potential risks, which generated a decrease in the storage capacity of El Kansra dam (?3.03 Mm3/year). The results show that erosion is active on more than three quarters (3/4) of the watershed, and a considerable loss of land with 8.36 Million tonnes per year. In this way, flood analysis and study of?hydrometeorological events identified the vulnerability of flood sites (hot-spot) contributing at 77%?of El Kansra siltation dam. Therefore, the consequence assessment is obtained by identifying risk elements and estimating potential damage coefficient, which represents the financial gap flow affecting the socio-economic context due to the erosion impacts.
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 200905001 and 201005019UNESCO-IHE Partnership Research Fund (UPaRF) under contract No.60038881the National Natural Science Foundation of China under contract No.50939003
文摘The rotary ring flume is used to study the silty sand movement in a periodic alternating current.Characteristics of sediment movement of different coasts in the tidal current are summarized.More detailed analysis of erosion-sedimentation function in a numerical simulation is made.The equilibrium sediment concentration is advanced.Based on the equilibrium sediment concentration,the seabed erosion-sedimentation index is derived and the seabed erosion-sedimentation calculation is analyzed.The seabed erosion-sedimentation index is used to calculate the seabed evolution of Yangshan sea area and a good agreement with field measurements is obtained.
文摘Meghadrigedda, a non-perennial drainage system is one of the major water resources of Vishakhapatnam city located in the northern coastal region of Andhra Pradesh, India. It traverses through the hilly terrain of Eastern GhatMobile Belt (EGMB) characterized by khondalitic rock formations. Excessive siltation scenario aggravated due to soil erosion in its catchment is threatening the very existence of Meghadrigedda reservoir. In order to assess the intensity of soil erosion as well as silt deposition in the reservoir, an integrated study has been undertaken which takes into consideration various topographic, morphological, soil, and land use/land cover characteristics of the basin. The study aims at identification and mapping of erosion prone zones with respect to silt deposition using remote sensing and GIS techniques.Alteration in human induced land use practices in its catchment due to rapid growth in population, urbanization and industrialization are found to be of prime reasons for various forms of erosion. The study has noticed that various forms of erosion like sheet, gully and stream erosion are responsible for the siltation at large scale which is causing reduction of its designed storage capacity by 40%. Various sub-watersheds of the basin have been prioritized on the basis of erosion intensity for suggesting various mitigation measures like check-dam construction, afforestation etc. to protect the reservoir from the silting problem.