The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face se...The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face seals is lacking. In particular a transient study and a difference analysis of steady-state and transient performance are imperative. In this paper, a case study is performed to gauge the effect of secondary O-ring seals on the dynamic behavior(steady-state performance and transient performance) of face seals. A numerical finite element method(FEM) model is developed for the dynamic analysis of spiral groove gas face seals with a flexibly mounted stator in the axial and angular modes. The rotor tilt angle, static stator tilt angle and O-ring damping are selected to investigate the effect of O-ring seals on face seals during stable running operation. The results show that the angular factor can be ignored to save time in the simulation under small damping or undamped conditions. However, large O-ring damping has an enormous effect on the angular phase difference of mated rings, affecting the steady-state performance of face seals and largely increasing the possibility of face contact that reduces the service life of face seals. A pressure drop fluctuation is carried out to analyze the effect of O-ring seals on the transient performance of face seals. The results show that face seals could remain stable without support stiffness and O-ring damping during normal stable operation but may enter a large-leakage state when confronting instantaneous fluctuations. The oscillation-amplitude shortening effect of O-ring damping on the axial mode is much greater than that on the angular modes and O-ring damping prefers to cater for axial motion at the cost of angular motion. This research proposes a detailed dynamic-property study of O-ring seals in spiral groove gas face seals, to assist in the design of face seals.展开更多
Recent studies on staggered labyrinth seals have focused on the effects of different parameters,such as the pressure ratio and rotational speed on the leakage flow rate.However,few investigations pay sufficient attent...Recent studies on staggered labyrinth seals have focused on the effects of different parameters,such as the pressure ratio and rotational speed on the leakage flow rate.However,few investigations pay sufficient attention to flow details and the sealing mechanism,which would be of practical importance in designing seals having higher performance.This paper establishes a theoretical model to study the seal mechanism,thus revealing that leakage is determined by the pressure ratio and geometric structure.Numerical simulation is implemented to illustrate details of the flow field within the seal structure.Viscous dissipation is used to quantitatively investigate the contribution that each location makes to the seal performance,revealing that orifices and stagnation points are the most important positions in the seal structure,generating the most dissipation.The orifice is carefully studied by using the theoretical model.Experiments for different pressure ratios are conducted and the results match well with those of the theoretical model and numerical simulation,verifying the theoretical model and analysis of the seal mechanism.Three new designs,based on a good understanding of the seal mechanism,are presented,with one reducing leakage by 24.5%.展开更多
Sealing performance of the reciprocating seals on a larger diameter (100 mmin diameter) axial piston is theoretically investigated. Based on the characteristics of theclearance flow between the seal and the piston, re...Sealing performance of the reciprocating seals on a larger diameter (100 mmin diameter) axial piston is theoretically investigated. Based on the characteristics of theclearance flow between the seal and the piston, reasonable boundary conditions for Navier-Stokesequations are determined and the equations are modified, so that the final equations can describethe real flow state of the clearance flow. Through combining the final equations with finite elementmethod, the pressure distributions within the clearance field during the reciprocating motion ofthe piston and the leakage rate with the pressure are studied. The deflections of the seal whichaffect sealing performance are calculated as well. Sealing performance of piston seals using oil asthe working liquid is compared with using water. It is concluded that the seal using water as theworking liquid is under dry friction, which cannot be dealt with the theory of fluid mechanics. Theseal structure is only acceptable using oil as the working liquid..展开更多
The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stre...The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stress and its structural parameters and working pressure, a mechanical analysis method for double-cone sealing of high pressure vessels is applied in analyzing the metal sealing ring under the condition of preload and operation. As a result, the formula of the unit sealing load for the metal sealing ring under operation with residual preload is shown in this paper, which ensures that the metal sealing ring has an excellent sealing effect and can prevent the metal sealing ring from yielding. Besides, while analyzing the sealing process of the metal sealing ring, the change rule of contact stress and working pressure is concluded here, putting forward that the structural parameters of the metal sealing ring are the major factors affecting the change rule. Finally, the analytical solution through theoretical analysis is compared with the simulation result through finite element analysis in a force feedback experiment, and both are consistent with each other, which fully verifies for the design and calculation theory on metal sealing ring's contact stress and its structural parameters and working pressure deduced in this paper. The proposed research will be treated as an applicable theory guiding the design of metal seal for subsea X-tree wellhead connectors.展开更多
The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentrat...The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentration attenuates rapidly,and the effective gas drainage period is short.The traditional sealing materials of yellow mud and cement-sand grout will readily shrink after the drilling hole is sealed,the sealing length is short and the sealing quality is not satisfactory.Currently widely used polyurethane material will shrink when it comes into contact with water,and the price is also very high.In this study,taking cement as a base material,a novel composite sealing material mixed by expansion admixture,additive,and fbrin and coupling agent was developed and the sealing performance and expansion property of the material were also studied and analyzed.The FEI Quanta TM 250 environmental scanning electron microscope was used to investigate the microstructure of material.The results revealed that the new composite sealing material had a desirable expansion performance and a defnite fluidity convenient for grouting.The solidifed material,combining closely with the drilling wall,possessed an adequate strength and was not easy to shrink.Compared to the conventional polyurethane,the gas drainage concentration by drilling sealing exceeded 40 percent,and the sealing capacity improves5 times,the sealing effect increases signifcantly.展开更多
Researchers seldom study the optimum design of a mechanical connector for subsea oil-gas pipeline based upon the sealing performance. An optimal design method of a novel subsea pipeline mechanical connector is present...Researchers seldom study the optimum design of a mechanical connector for subsea oil-gas pipeline based upon the sealing performance. An optimal design method of a novel subsea pipeline mechanical connector is presented. By analyzing the static metal sealing mechanism, the critical condition of the sealing performance is established for this connector and the formulation method of the contact pressure on the sealing surface is created. By the method the minimum mean contact pressure of the 8.625 inch connector is calculated as 361 MPa, which is the constraint condition in the optimum design of connector.The finite element model is created in ANSYS Parametric Design Language(APDL) and the structure is optimized by the zero-order method, with variance of contact pressure as the objective function, and mean contact pressures and plastic strains as constraint variables. The optimization shows that variances of contact pressure on two sealing surfaces decrease by 72.41% and 89.33%, respectively, and mean contact pressures increase by 31.18% and 52.84%, respectively. The comparison of the optimal connectors and non-optimal connectors in the water pressure experiments and bending experiments shows that the sealing ability of optimized connectors is much higher than the rated pressure of 4.5 MPa, and the optimal connectors don’t leak under the bending moment of 52.2 kN·m.This research provides the formulation to solve contact pressure on the sealing surface and a structure optimization method to design the connectors with various dimensions.展开更多
The equipment has a high and strict requirement of dynamic seals, especially working with Long stroke reciprocating motion under a sandy condition and with a great deal of gas. The seal form of power cylinder on the u...The equipment has a high and strict requirement of dynamic seals, especially working with Long stroke reciprocating motion under a sandy condition and with a great deal of gas. The seal form of power cylinder on the underground part of hydraulic power rodless type oil extraction equipment is studied. We design three seal structures, do the performance testing and the life testing with related equipment. It turned out that the seal form that combines gap seal with sand prevention techniques has high performance, longer life. The power cylinder works stably and reliably.展开更多
A fault is not simply a plane, but a zone consisting of a series of broken planes or lower faults. The greater the scale of faults, the wider and more complex the fault zone is. Fault-sealing properties are influenced...A fault is not simply a plane, but a zone consisting of a series of broken planes or lower faults. The greater the scale of faults, the wider and more complex the fault zone is. Fault-sealing properties are influenced by the fault zone itself, whose fault displacement, depth, net-to-gross-ratio of mudstone, fault plane angle, and fault mechanical properties play important controlling roles. The sealing of hydrocarbon by the fault zone depends on whether the fault zone can form a continuous sealing zone and if the pore throats connecting those fault zones are small enough. The concept of fault zone-sealing potential is proposed here, and a quantitative formula is established by using a great amount of practical statistical data as well as the fuzzy comprehensive evaluation method, which is a comprehensive characterization parameter to judge whether or not fault zones could seal oil hydrocarbon. The greater the value of the fault zone-sealing potential, the better sealed the fault is. For example, with increasing depth, the sealing degree of the Xin 68 Fault in the Dongxin 1 oilfield changes greatly, reflecting the complexity of fault-sealing properties.展开更多
To overcome the current difficulties of high-precision machining and the high manufacturing and maintenance costs of spherical seals for deep-water drilling ball joints,a new spherical seal technique is proposed in th...To overcome the current difficulties of high-precision machining and the high manufacturing and maintenance costs of spherical seals for deep-water drilling ball joints,a new spherical seal technique is proposed in this paper.The spherical seal is mainly composed of silicone rubber and polytetrafluoroethylene(PTFE).Rational structural design makes the seal independent from the ball and other components,making it easy to replace if leakage occurs at its surface.PTFE can elastically deform over a certain deformation range,which guarantees that two sealing surfaces fit tightly together.O-Ring and PTFE elasticity makes up for any lack of accuracy during spherical machining and decreases the machining precision requirements for spherical surfaces.Using a finite element technique and nonlinear theory,the performance of the spherical seal under the influence of various factors is determined.The results show that the spherical seal designed in this paper exhibits excellent sealing performance under lowtemperature and high-pressure conditions.The spherical seal,a combination of an O-ring and PTFE,has the advantages of cheap manufacturing and maintenance costs and excellent sealing performance.展开更多
The life of Nitrile Butadiene Rubber(NBR) O-ring seal having shore hardness of A70 and A90 under shock loading conditions was investigated by a specially designed pneumo-hydraulic shock test rig. Shock tests have been...The life of Nitrile Butadiene Rubber(NBR) O-ring seal having shore hardness of A70 and A90 under shock loading conditions was investigated by a specially designed pneumo-hydraulic shock test rig. Shock tests have been carried out on bare seals, seal with conventional polytetrafluoroethylene(PTFE) back-up rings and seal with newly developed carbon composite back-up rings to study its behaviour under different operating conditions until failure. Experiments were conducted by varying annular gap ranging from 0.3 to 0.5 mm, oil temperature from 30 ℃ to 70 ℃ and rate of pressure rise from 600 to 2400 MPa/s. Significant enhancement in seal life was observed with carbon composite back-up ring at reduced annular clearances compared to seal life with conventional PTFE back-up ring and without back-up rings.展开更多
To solve the existing problems of imperfect sealing and the inaccurate measurement of gas pressure in traditional sealing,the present study builds a new model of capsule-slime sealing device based on wireless pressure...To solve the existing problems of imperfect sealing and the inaccurate measurement of gas pressure in traditional sealing,the present study builds a new model of capsule-slime sealing device based on wireless pressure gauge.The new sealing device is mainly composed of two sets of capsules,a capsule connecting piece and a slime part,measures the pressure through the wireless communication technology,and seals through chemical reaction in the capsule,which generates gas to expand the capsule and extrude the pre-stored slime.Two methods of extruding pre-stored slime are proposed:in the first method,transverse force is generated by the expansion of the capsules at both ends,pushing the capsules toward the middle through the chute and squeezing the pre-stored slime out;in the second,high-pressure gas generated in the capsules is led into the expansion tube,which is inserted into the storage tube,squeezing it and letting the slime out to complete the sealing process.Then the research studies the effect of sealing under the condition of drilling with the structure of slime storage tube.The results indicate that the maximum standing time of slime wrapped in metal net is 2 h,instead of the expected 10 d,failing to meet the sealing requirements.When the slime viscosity is 1200–3000 m Paás in the structure of slime storage tube,the best viscosity of slime is achieved and can simulate sealing the drilling hole(5–4,4–2.36,2.36–1.18,1.18–0.15 mm in diameter),as well as the gap caused by mixed sand accumulation.展开更多
基金Supported by National Key Basic Research Program of China(973Program,Grant No.2012CB026003)National Science and Technology Major Project of China(Grant No.ZX06901)
文摘The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face seals is lacking. In particular a transient study and a difference analysis of steady-state and transient performance are imperative. In this paper, a case study is performed to gauge the effect of secondary O-ring seals on the dynamic behavior(steady-state performance and transient performance) of face seals. A numerical finite element method(FEM) model is developed for the dynamic analysis of spiral groove gas face seals with a flexibly mounted stator in the axial and angular modes. The rotor tilt angle, static stator tilt angle and O-ring damping are selected to investigate the effect of O-ring seals on face seals during stable running operation. The results show that the angular factor can be ignored to save time in the simulation under small damping or undamped conditions. However, large O-ring damping has an enormous effect on the angular phase difference of mated rings, affecting the steady-state performance of face seals and largely increasing the possibility of face contact that reduces the service life of face seals. A pressure drop fluctuation is carried out to analyze the effect of O-ring seals on the transient performance of face seals. The results show that face seals could remain stable without support stiffness and O-ring damping during normal stable operation but may enter a large-leakage state when confronting instantaneous fluctuations. The oscillation-amplitude shortening effect of O-ring damping on the axial mode is much greater than that on the angular modes and O-ring damping prefers to cater for axial motion at the cost of angular motion. This research proposes a detailed dynamic-property study of O-ring seals in spiral groove gas face seals, to assist in the design of face seals.
基金Supported by National Natural Science Foundation of China(Grant No.51136003)the support provided by Doctor HUANG Weifeng,Doctor LI Yongjian,and Professor WANG Yuming at Department,of Mechanical Engineering, Tsinghua University,China,in establishing the test rig for the labyrinth seal
文摘Recent studies on staggered labyrinth seals have focused on the effects of different parameters,such as the pressure ratio and rotational speed on the leakage flow rate.However,few investigations pay sufficient attention to flow details and the sealing mechanism,which would be of practical importance in designing seals having higher performance.This paper establishes a theoretical model to study the seal mechanism,thus revealing that leakage is determined by the pressure ratio and geometric structure.Numerical simulation is implemented to illustrate details of the flow field within the seal structure.Viscous dissipation is used to quantitatively investigate the contribution that each location makes to the seal performance,revealing that orifices and stagnation points are the most important positions in the seal structure,generating the most dissipation.The orifice is carefully studied by using the theoretical model.Experiments for different pressure ratios are conducted and the results match well with those of the theoretical model and numerical simulation,verifying the theoretical model and analysis of the seal mechanism.Three new designs,based on a good understanding of the seal mechanism,are presented,with one reducing leakage by 24.5%.
基金This project is supported by National Natural Science Foundation of China(No.50005019).
文摘Sealing performance of the reciprocating seals on a larger diameter (100 mmin diameter) axial piston is theoretically investigated. Based on the characteristics of theclearance flow between the seal and the piston, reasonable boundary conditions for Navier-Stokesequations are determined and the equations are modified, so that the final equations can describethe real flow state of the clearance flow. Through combining the final equations with finite elementmethod, the pressure distributions within the clearance field during the reciprocating motion ofthe piston and the leakage rate with the pressure are studied. The deflections of the seal whichaffect sealing performance are calculated as well. Sealing performance of piston seals using oil asthe working liquid is compared with using water. It is concluded that the seal using water as theworking liquid is under dry friction, which cannot be dealt with the theory of fluid mechanics. Theseal structure is only acceptable using oil as the working liquid..
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2012AA09A205)
文摘The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stress and its structural parameters and working pressure, a mechanical analysis method for double-cone sealing of high pressure vessels is applied in analyzing the metal sealing ring under the condition of preload and operation. As a result, the formula of the unit sealing load for the metal sealing ring under operation with residual preload is shown in this paper, which ensures that the metal sealing ring has an excellent sealing effect and can prevent the metal sealing ring from yielding. Besides, while analyzing the sealing process of the metal sealing ring, the change rule of contact stress and working pressure is concluded here, putting forward that the structural parameters of the metal sealing ring are the major factors affecting the change rule. Finally, the analytical solution through theoretical analysis is compared with the simulation result through finite element analysis in a force feedback experiment, and both are consistent with each other, which fully verifies for the design and calculation theory on metal sealing ring's contact stress and its structural parameters and working pressure deduced in this paper. The proposed research will be treated as an applicable theory guiding the design of metal seal for subsea X-tree wellhead connectors.
基金fnancially supported by the National Natural Science Foundation of China(No.51274195)the Natural Science Foundation of Jiangsu Province(No.BK2012571)+3 种基金the Program for New Century Excellent Talents in University(No.NCET-12-0959)the China Postdoctoral Science Foundation(No.20090450930)the National Basic Research Program of China(No.2011CB201205)Qing Lan Project,and the Youth Foundation of China University of Mining and Technology(No.2007A003)
文摘The geological condition of Chinese coal mines are complex and high gassy,which account for ffty percent to seventy percent.Because of the abundant pores and cracks around the drainage drilling hole,the gas concentration attenuates rapidly,and the effective gas drainage period is short.The traditional sealing materials of yellow mud and cement-sand grout will readily shrink after the drilling hole is sealed,the sealing length is short and the sealing quality is not satisfactory.Currently widely used polyurethane material will shrink when it comes into contact with water,and the price is also very high.In this study,taking cement as a base material,a novel composite sealing material mixed by expansion admixture,additive,and fbrin and coupling agent was developed and the sealing performance and expansion property of the material were also studied and analyzed.The FEI Quanta TM 250 environmental scanning electron microscope was used to investigate the microstructure of material.The results revealed that the new composite sealing material had a desirable expansion performance and a defnite fluidity convenient for grouting.The solidifed material,combining closely with the drilling wall,possessed an adequate strength and was not easy to shrink.Compared to the conventional polyurethane,the gas drainage concentration by drilling sealing exceeded 40 percent,and the sealing capacity improves5 times,the sealing effect increases signifcantly.
基金Supported by National Natural Science Foundation of China(Grant Nos.51279042,51105088)
文摘Researchers seldom study the optimum design of a mechanical connector for subsea oil-gas pipeline based upon the sealing performance. An optimal design method of a novel subsea pipeline mechanical connector is presented. By analyzing the static metal sealing mechanism, the critical condition of the sealing performance is established for this connector and the formulation method of the contact pressure on the sealing surface is created. By the method the minimum mean contact pressure of the 8.625 inch connector is calculated as 361 MPa, which is the constraint condition in the optimum design of connector.The finite element model is created in ANSYS Parametric Design Language(APDL) and the structure is optimized by the zero-order method, with variance of contact pressure as the objective function, and mean contact pressures and plastic strains as constraint variables. The optimization shows that variances of contact pressure on two sealing surfaces decrease by 72.41% and 89.33%, respectively, and mean contact pressures increase by 31.18% and 52.84%, respectively. The comparison of the optimal connectors and non-optimal connectors in the water pressure experiments and bending experiments shows that the sealing ability of optimized connectors is much higher than the rated pressure of 4.5 MPa, and the optimal connectors don’t leak under the bending moment of 52.2 kN·m.This research provides the formulation to solve contact pressure on the sealing surface and a structure optimization method to design the connectors with various dimensions.
文摘The equipment has a high and strict requirement of dynamic seals, especially working with Long stroke reciprocating motion under a sandy condition and with a great deal of gas. The seal form of power cylinder on the underground part of hydraulic power rodless type oil extraction equipment is studied. We design three seal structures, do the performance testing and the life testing with related equipment. It turned out that the seal form that combines gap seal with sand prevention techniques has high performance, longer life. The power cylinder works stably and reliably.
基金the project "Study on Technology to Increase the Recovery Ratio in Oilfields with Complex Fault Block" (P01035), a Science and Technology Promotion Project in the Tenth Five-Year Plan of SINOPECT
文摘A fault is not simply a plane, but a zone consisting of a series of broken planes or lower faults. The greater the scale of faults, the wider and more complex the fault zone is. Fault-sealing properties are influenced by the fault zone itself, whose fault displacement, depth, net-to-gross-ratio of mudstone, fault plane angle, and fault mechanical properties play important controlling roles. The sealing of hydrocarbon by the fault zone depends on whether the fault zone can form a continuous sealing zone and if the pore throats connecting those fault zones are small enough. The concept of fault zone-sealing potential is proposed here, and a quantitative formula is established by using a great amount of practical statistical data as well as the fuzzy comprehensive evaluation method, which is a comprehensive characterization parameter to judge whether or not fault zones could seal oil hydrocarbon. The greater the value of the fault zone-sealing potential, the better sealed the fault is. For example, with increasing depth, the sealing degree of the Xin 68 Fault in the Dongxin 1 oilfield changes greatly, reflecting the complexity of fault-sealing properties.
文摘To overcome the current difficulties of high-precision machining and the high manufacturing and maintenance costs of spherical seals for deep-water drilling ball joints,a new spherical seal technique is proposed in this paper.The spherical seal is mainly composed of silicone rubber and polytetrafluoroethylene(PTFE).Rational structural design makes the seal independent from the ball and other components,making it easy to replace if leakage occurs at its surface.PTFE can elastically deform over a certain deformation range,which guarantees that two sealing surfaces fit tightly together.O-Ring and PTFE elasticity makes up for any lack of accuracy during spherical machining and decreases the machining precision requirements for spherical surfaces.Using a finite element technique and nonlinear theory,the performance of the spherical seal under the influence of various factors is determined.The results show that the spherical seal designed in this paper exhibits excellent sealing performance under lowtemperature and high-pressure conditions.The spherical seal,a combination of an O-ring and PTFE,has the advantages of cheap manufacturing and maintenance costs and excellent sealing performance.
文摘The life of Nitrile Butadiene Rubber(NBR) O-ring seal having shore hardness of A70 and A90 under shock loading conditions was investigated by a specially designed pneumo-hydraulic shock test rig. Shock tests have been carried out on bare seals, seal with conventional polytetrafluoroethylene(PTFE) back-up rings and seal with newly developed carbon composite back-up rings to study its behaviour under different operating conditions until failure. Experiments were conducted by varying annular gap ranging from 0.3 to 0.5 mm, oil temperature from 30 ℃ to 70 ℃ and rate of pressure rise from 600 to 2400 MPa/s. Significant enhancement in seal life was observed with carbon composite back-up ring at reduced annular clearances compared to seal life with conventional PTFE back-up ring and without back-up rings.
基金the support from the National Key Research and Development Program of China (No. 2017YFC0805201)the Fundamental Research Funds for the Central Universities of China (No. 2017CXNL02)+1 种基金the program for Innovative Research Team in University of Ministry of Education of China (No. IRT13098)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China (PAPD)
文摘To solve the existing problems of imperfect sealing and the inaccurate measurement of gas pressure in traditional sealing,the present study builds a new model of capsule-slime sealing device based on wireless pressure gauge.The new sealing device is mainly composed of two sets of capsules,a capsule connecting piece and a slime part,measures the pressure through the wireless communication technology,and seals through chemical reaction in the capsule,which generates gas to expand the capsule and extrude the pre-stored slime.Two methods of extruding pre-stored slime are proposed:in the first method,transverse force is generated by the expansion of the capsules at both ends,pushing the capsules toward the middle through the chute and squeezing the pre-stored slime out;in the second,high-pressure gas generated in the capsules is led into the expansion tube,which is inserted into the storage tube,squeezing it and letting the slime out to complete the sealing process.Then the research studies the effect of sealing under the condition of drilling with the structure of slime storage tube.The results indicate that the maximum standing time of slime wrapped in metal net is 2 h,instead of the expected 10 d,failing to meet the sealing requirements.When the slime viscosity is 1200–3000 m Paás in the structure of slime storage tube,the best viscosity of slime is achieved and can simulate sealing the drilling hole(5–4,4–2.36,2.36–1.18,1.18–0.15 mm in diameter),as well as the gap caused by mixed sand accumulation.